双层量子霍尔系统在υ=1/2时的涡旋解

Xianjun Huang
{"title":"双层量子霍尔系统在υ=1/2时的涡旋解","authors":"Xianjun Huang","doi":"10.11804/NuclPhysRev.30.02.128","DOIUrl":null,"url":null,"abstract":"We investigate the static vortex solutions of a bilayer quantum Hall state at the Landau-level filling factor υ = 1/2. This work is based on the ZHK model, which is an effective field theory including ChernSimons gauge interactions. We deduce the dimensionless nonlinear equations of motion for vortices possessing cylindrically symmetry, and analyze the asymptotical behaviors of solutions. Additionally, we analyze the values of critical coupling constants under the self-dual condition, and obtain the self-dual equations. Finally, vortices of type (0, 1), (0, −1), (1, −1) and (−1, −1) are solved with numerical methods. We reach the conclusion that vortex of type (1, −1) is unstable, which will decay to (1, 0) and (0, −1). The vortices of type (0, −1) and (−1, −1) are self-dual solutions from numerical results.","PeriodicalId":65595,"journal":{"name":"原子核物理评论","volume":"30 1","pages":"128-135"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex Solutions of Bilayer Quantum Hall Systems at υ=1/2\",\"authors\":\"Xianjun Huang\",\"doi\":\"10.11804/NuclPhysRev.30.02.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the static vortex solutions of a bilayer quantum Hall state at the Landau-level filling factor υ = 1/2. This work is based on the ZHK model, which is an effective field theory including ChernSimons gauge interactions. We deduce the dimensionless nonlinear equations of motion for vortices possessing cylindrically symmetry, and analyze the asymptotical behaviors of solutions. Additionally, we analyze the values of critical coupling constants under the self-dual condition, and obtain the self-dual equations. Finally, vortices of type (0, 1), (0, −1), (1, −1) and (−1, −1) are solved with numerical methods. We reach the conclusion that vortex of type (1, −1) is unstable, which will decay to (1, 0) and (0, −1). The vortices of type (0, −1) and (−1, −1) are self-dual solutions from numerical results.\",\"PeriodicalId\":65595,\"journal\":{\"name\":\"原子核物理评论\",\"volume\":\"30 1\",\"pages\":\"128-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子核物理评论\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.11804/NuclPhysRev.30.02.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子核物理评论","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11804/NuclPhysRev.30.02.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了朗道能级填充因子υ = 1/2时双层量子霍尔态的静态涡旋解。这项工作是基于ZHK模型,这是一个有效的场理论,包括ChernSimons规范相互作用。我们推导了具有圆柱对称的涡的无量纲非线性运动方程,并分析了解的渐近行为。此外,我们分析了自对偶条件下的临界耦合常数值,得到了自对偶方程。最后,用数值方法求解了类型为(0,1)、(0,−1)、(1,−1)和(−1,−1)的涡。我们得出结论,(1,−1)型涡是不稳定的,它将衰变为(1,0)和(0,−1)。(0,−1)和(−1,−1)型涡是数值结果的自对偶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex Solutions of Bilayer Quantum Hall Systems at υ=1/2
We investigate the static vortex solutions of a bilayer quantum Hall state at the Landau-level filling factor υ = 1/2. This work is based on the ZHK model, which is an effective field theory including ChernSimons gauge interactions. We deduce the dimensionless nonlinear equations of motion for vortices possessing cylindrically symmetry, and analyze the asymptotical behaviors of solutions. Additionally, we analyze the values of critical coupling constants under the self-dual condition, and obtain the self-dual equations. Finally, vortices of type (0, 1), (0, −1), (1, −1) and (−1, −1) are solved with numerical methods. We reach the conclusion that vortex of type (1, −1) is unstable, which will decay to (1, 0) and (0, −1). The vortices of type (0, −1) and (−1, −1) are self-dual solutions from numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3168
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信