简单生成树,条件高尔顿-沃森树,随机分配和冷凝

IF 1.3 Q2 STATISTICS & PROBABILITY
S. Janson
{"title":"简单生成树,条件高尔顿-沃森树,随机分配和冷凝","authors":"S. Janson","doi":"10.1214/11-PS188","DOIUrl":null,"url":null,"abstract":"We give a unified treatment of the limit, as the size tends to infinity, \nof simply generated random trees, \nincluding both \nthe well-known result in the standard case \nof critical Galton–Watson trees \nand similar but less well-known results in the \nother cases (i.e., when no equivalent critical Galton–Watson tree exists). \nThere is a well-defined limit in the form of an infinite \nrandom tree in all cases; \nfor critical Galton–Watson trees this tree is locally finite but for the \nother cases the random limit has exactly one node of infinite degree. \n \nThe proofs \nuse a well-known connection to \na random allocation model that we call balls-in-boxes, and \nwe prove corresponding theorems for this model. \n \nThis survey paper contains \nmany known results from many different sources, together \nwith some new results.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"9 1","pages":"103-252"},"PeriodicalIF":1.3000,"publicationDate":"2011-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/11-PS188","citationCount":"221","resultStr":"{\"title\":\"Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation\",\"authors\":\"S. Janson\",\"doi\":\"10.1214/11-PS188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a unified treatment of the limit, as the size tends to infinity, \\nof simply generated random trees, \\nincluding both \\nthe well-known result in the standard case \\nof critical Galton–Watson trees \\nand similar but less well-known results in the \\nother cases (i.e., when no equivalent critical Galton–Watson tree exists). \\nThere is a well-defined limit in the form of an infinite \\nrandom tree in all cases; \\nfor critical Galton–Watson trees this tree is locally finite but for the \\nother cases the random limit has exactly one node of infinite degree. \\n \\nThe proofs \\nuse a well-known connection to \\na random allocation model that we call balls-in-boxes, and \\nwe prove corresponding theorems for this model. \\n \\nThis survey paper contains \\nmany known results from many different sources, together \\nwith some new results.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\"9 1\",\"pages\":\"103-252\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2011-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/11-PS188\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/11-PS188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/11-PS188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 221

摘要

我们给出了简单生成随机树的极限的统一处理,当大小趋于无穷大时,包括临界高尔顿-沃森树的标准情况下众所周知的结果和其他情况下类似但不太为人所知的结果(即,当不存在等效的临界高尔顿-沃森树时)。在所有情况下,都有一个以无限随机树形式定义的极限;对于临界高尔顿-沃森树,这棵树是局部有限的,但对于其他情况,随机极限恰好有一个无限次的节点。这些证明使用了一个众所周知的与随机分配模型的联系,我们称之为“盒子里的球”,我们为这个模型证明了相应的定理。这份调查报告包含了许多来自不同来源的已知结果,以及一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation
We give a unified treatment of the limit, as the size tends to infinity, of simply generated random trees, including both the well-known result in the standard case of critical Galton–Watson trees and similar but less well-known results in the other cases (i.e., when no equivalent critical Galton–Watson tree exists). There is a well-defined limit in the form of an infinite random tree in all cases; for critical Galton–Watson trees this tree is locally finite but for the other cases the random limit has exactly one node of infinite degree. The proofs use a well-known connection to a random allocation model that we call balls-in-boxes, and we prove corresponding theorems for this model. This survey paper contains many known results from many different sources, together with some new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信