本福德定律的基本理论

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Berger, T. Hill
{"title":"本福德定律的基本理论","authors":"A. Berger, T. Hill","doi":"10.1214/11-PS175","DOIUrl":null,"url":null,"abstract":"Drawing from a large, diverse body of work, this survey presents a comprehensive and unified introduction to the mathematics underlying the prevalent logarithmic distribution of significant digits and significands, often referred to as Benford's Law (BL) or, in a special case, as the First Digit Law. The invariance properties that characterize BL are developed in detail. Special attention is given to the emergence of BL in a wide variety of deterministic and random processes. Though mainly expository in nature, the article also provides strengthened versions of, and simplified proofs for, many key results in the literature. Numerous intriguing problems for future research arise naturally.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/11-PS175","citationCount":"93","resultStr":"{\"title\":\"A basic theory of Benford's Law ∗\",\"authors\":\"A. Berger, T. Hill\",\"doi\":\"10.1214/11-PS175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing from a large, diverse body of work, this survey presents a comprehensive and unified introduction to the mathematics underlying the prevalent logarithmic distribution of significant digits and significands, often referred to as Benford's Law (BL) or, in a special case, as the First Digit Law. The invariance properties that characterize BL are developed in detail. Special attention is given to the emergence of BL in a wide variety of deterministic and random processes. Though mainly expository in nature, the article also provides strengthened versions of, and simplified proofs for, many key results in the literature. Numerous intriguing problems for future research arise naturally.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/11-PS175\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/11-PS175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/11-PS175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 93

摘要

从大量不同的工作中,本调查对有效数字和有效数字的普遍对数分布的数学基础进行了全面和统一的介绍,通常称为本福德定律(BL),或者在特殊情况下称为第一位数定律。详细讨论了表征BL的不变性。特别注意BL在各种确定性和随机过程中的出现。虽然本质上主要是说明性的,但文章也提供了文献中许多关键结果的强化版本和简化证明。许多未来研究的有趣问题自然产生了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A basic theory of Benford's Law ∗
Drawing from a large, diverse body of work, this survey presents a comprehensive and unified introduction to the mathematics underlying the prevalent logarithmic distribution of significant digits and significands, often referred to as Benford's Law (BL) or, in a special case, as the First Digit Law. The invariance properties that characterize BL are developed in detail. Special attention is given to the emergence of BL in a wide variety of deterministic and random processes. Though mainly expository in nature, the article also provides strengthened versions of, and simplified proofs for, many key results in the literature. Numerous intriguing problems for future research arise naturally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信