组合学和簇展开

IF 1.3 Q2 STATISTICS & PROBABILITY
William G. Faris
{"title":"组合学和簇展开","authors":"William G. Faris","doi":"10.1214/10-PS159","DOIUrl":null,"url":null,"abstract":"This article is about the connection between enumerative combinatorics and equilibrium statistical mechanics. The combinatorics side \nconcerns species of combinatorial structures and the associated exponential generating functions. The passage from species to generating functions \nis a combinatorial analog of the Fourier transform. Indeed, there is a convolution multiplication on species that is mapped to a pointwise multiplication of the exponential generating functions. The statistical mechanics side \ndeals with a probability model of an equilibrium gas. The cluster expansion \nthat gives the density of the gas is the exponential generating function for \nthe species of rooted connected graphs. The main results of the theory are \nsimple criteria that guarantee the convergence of this expansion. It turns \nout that other problems in combinatorics and statistical mechanics can be \ntranslated to this gas setting, so it is a universal prescription for dealing \nwith systems of high dimension.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2010-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/10-PS159","citationCount":"30","resultStr":"{\"title\":\"Combinatorics and cluster expansions\",\"authors\":\"William G. Faris\",\"doi\":\"10.1214/10-PS159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is about the connection between enumerative combinatorics and equilibrium statistical mechanics. The combinatorics side \\nconcerns species of combinatorial structures and the associated exponential generating functions. The passage from species to generating functions \\nis a combinatorial analog of the Fourier transform. Indeed, there is a convolution multiplication on species that is mapped to a pointwise multiplication of the exponential generating functions. The statistical mechanics side \\ndeals with a probability model of an equilibrium gas. The cluster expansion \\nthat gives the density of the gas is the exponential generating function for \\nthe species of rooted connected graphs. The main results of the theory are \\nsimple criteria that guarantee the convergence of this expansion. It turns \\nout that other problems in combinatorics and statistical mechanics can be \\ntranslated to this gas setting, so it is a universal prescription for dealing \\nwith systems of high dimension.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2010-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/10-PS159\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-PS159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-PS159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 30

摘要

本文论述了列举组合学与平衡统计力学之间的联系。组合学方面涉及组合结构的种类和相关的指数生成函数。从种到生成函数的过渡是傅里叶变换的组合模拟。事实上,在物种上有一个卷积乘法,它被映射为指数生成函数的逐点乘法。统计力学方面处理平衡气体的概率模型。给出气体密度的簇展开是根连通图种的指数生成函数。该理论的主要结果是保证该展开式收敛的简单准则。事实证明,组合学和统计力学中的其他问题可以转化为这种气体环境,因此它是处理高维系统的通用处方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorics and cluster expansions
This article is about the connection between enumerative combinatorics and equilibrium statistical mechanics. The combinatorics side concerns species of combinatorial structures and the associated exponential generating functions. The passage from species to generating functions is a combinatorial analog of the Fourier transform. Indeed, there is a convolution multiplication on species that is mapped to a pointwise multiplication of the exponential generating functions. The statistical mechanics side deals with a probability model of an equilibrium gas. The cluster expansion that gives the density of the gas is the exponential generating function for the species of rooted connected graphs. The main results of the theory are simple criteria that guarantee the convergence of this expansion. It turns out that other problems in combinatorics and statistical mechanics can be translated to this gas setting, so it is a universal prescription for dealing with systems of high dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信