{"title":"离散时间元人口模型的极限定理","authors":"F. Buckley, P. Pollett","doi":"10.1214/10-PS158","DOIUrl":null,"url":null,"abstract":"We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Limit theorems for discrete-time metapopulation models\",\"authors\":\"F. Buckley, P. Pollett\",\"doi\":\"10.1214/10-PS158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-PS158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-PS158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Limit theorems for discrete-time metapopulation models
We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.