离散时间元人口模型的极限定理

IF 1.3 Q2 STATISTICS & PROBABILITY
F. Buckley, P. Pollett
{"title":"离散时间元人口模型的极限定理","authors":"F. Buckley, P. Pollett","doi":"10.1214/10-PS158","DOIUrl":null,"url":null,"abstract":"We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Limit theorems for discrete-time metapopulation models\",\"authors\":\"F. Buckley, P. Pollett\",\"doi\":\"10.1214/10-PS158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-PS158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-PS158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 46

摘要

我们描述了一类用于研究元种群(种群网络)的一维链二项式模型。建立了具有这些模型显著特征的时间非齐次马尔可夫链的极限定理。我们证明了一个大数定律,它可以用来识别近似的确定性轨迹,并证明了一个中心极限定理,该定理证明了该轨迹的尺度波动具有近似的自回归结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems for discrete-time metapopulation models
We describe a class of one-dimensional chain binomial models of use in studying metapopulations (population networks). Limit theorems are established for time-inhomogeneous Markov chains that share the salient features of these models. We prove a law of large numbers, which can be used to identify an approximating deterministic trajectory, and a central limit theorem, which establishes that the scaled fluctuations about this trajectory have an approximating autoregressive structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信