平滑区间映射的符号扩展

IF 1.3 Q2 STATISTICS & PROBABILITY
T. Downarowicz, Poland
{"title":"平滑区间映射的符号扩展","authors":"T. Downarowicz, Poland","doi":"10.1214/10-PS164","DOIUrl":null,"url":null,"abstract":"In this course we will present the full proof of the fact that every \nsmooth dynamical system on the interval or circle X , constituted by the \nforward iterates of a function f : X → X which is of class C r with r > 1, \nadmits a symbolic extension, i.e., there exists a bilateral subshift ( Y , S ) with \n Y a closed shift-invariant subset of Λ ℤ , where Λ is a finite alphabet, and a \ncontinuous surjection π : Y → X which intertwines the action of f (on X ) \nwith that of the shift map S (on Y ). Moreover, we give a precise estimate \n(from above) on the entropy of each invariant measure ν supported by Y \nin an optimized symbolic extension. This estimate depends on the entropy \nof the underlying measure μ on X , the \"Lyapunov exponent\" of μ (the \ngenuine Lyapunov exponent for ergodic μ, otherwise its analog), and the \nsmoothness parameter r . This estimate agrees with a conjecture formulated \nin [15] around 2003 for smooth dynamical systems on manifolds.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"16 1","pages":"84-104"},"PeriodicalIF":1.3000,"publicationDate":"2010-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/10-PS164","citationCount":"4","resultStr":"{\"title\":\"Symbolic extensions of smooth interval maps\",\"authors\":\"T. Downarowicz, Poland\",\"doi\":\"10.1214/10-PS164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this course we will present the full proof of the fact that every \\nsmooth dynamical system on the interval or circle X , constituted by the \\nforward iterates of a function f : X → X which is of class C r with r > 1, \\nadmits a symbolic extension, i.e., there exists a bilateral subshift ( Y , S ) with \\n Y a closed shift-invariant subset of Λ ℤ , where Λ is a finite alphabet, and a \\ncontinuous surjection π : Y → X which intertwines the action of f (on X ) \\nwith that of the shift map S (on Y ). Moreover, we give a precise estimate \\n(from above) on the entropy of each invariant measure ν supported by Y \\nin an optimized symbolic extension. This estimate depends on the entropy \\nof the underlying measure μ on X , the \\\"Lyapunov exponent\\\" of μ (the \\ngenuine Lyapunov exponent for ergodic μ, otherwise its analog), and the \\nsmoothness parameter r . This estimate agrees with a conjecture formulated \\nin [15] around 2003 for smooth dynamical systems on manifolds.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\"16 1\",\"pages\":\"84-104\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2010-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/10-PS164\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-PS164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-PS164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

在本课程中我们将完整的证明,每一个区间或圆X光滑动力系统,由正向迭代函数f:→X的类C r r > 1,承认一个象征性的扩展,也就是说,存在一个双边构造(Y, S)与Y的一个封闭的移不变的子集Λℤ,Λ有限字母表,和一个连续满射π:Y→X的行动与f (X)与转变地图(Y)。此外,我们给出了在优化的符号扩展中Y支持的每个不变测度ν的熵的精确估计(从上面)。这个估计取决于底层度量μ在X上的熵,μ的“Lyapunov指数”(遍历μ的真正Lyapunov指数,否则它的模拟)和平滑参数r。这个估计与[15]在2003年左右对流形上的光滑动力系统提出的一个猜想一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic extensions of smooth interval maps
In this course we will present the full proof of the fact that every smooth dynamical system on the interval or circle X , constituted by the forward iterates of a function f : X → X which is of class C r with r > 1, admits a symbolic extension, i.e., there exists a bilateral subshift ( Y , S ) with Y a closed shift-invariant subset of Λ ℤ , where Λ is a finite alphabet, and a continuous surjection π : Y → X which intertwines the action of f (on X ) with that of the shift map S (on Y ). Moreover, we give a precise estimate (from above) on the entropy of each invariant measure ν supported by Y in an optimized symbolic extension. This estimate depends on the entropy of the underlying measure μ on X , the "Lyapunov exponent" of μ (the genuine Lyapunov exponent for ergodic μ, otherwise its analog), and the smoothness parameter r . This estimate agrees with a conjecture formulated in [15] around 2003 for smooth dynamical systems on manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信