随机组合结构中的再生

IF 1.3 Q2 STATISTICS & PROBABILITY
A. Gnedin
{"title":"随机组合结构中的再生","authors":"A. Gnedin","doi":"10.1214/10-PS163","DOIUrl":null,"url":null,"abstract":"Kingman’s theory of partition structures relates, via a natural \nsampling procedure, finite partitions to hypothetical infinite populations. \nExplicit formulas for distributions of such partitions are rare, the most notable exception being the Ewens sampling formula, and its two-parameter \nextension by Pitman. When one adds an extra structure to the partitions \nlike a linear order on the set of blocks and regenerative properties, some \nrepresentation theorems allow to get more precise information on the distribution. In these notes we survey recent developments of the theory of \nregenerative partitions and compositions. In particular, we discuss connection between ordered and unordered structures, regenerative properties of \nthe Ewens-Pitman partitions, and asymptotics of the number of components.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2009-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/10-PS163","citationCount":"29","resultStr":"{\"title\":\"Regeneration in random combinatorial structures\",\"authors\":\"A. Gnedin\",\"doi\":\"10.1214/10-PS163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kingman’s theory of partition structures relates, via a natural \\nsampling procedure, finite partitions to hypothetical infinite populations. \\nExplicit formulas for distributions of such partitions are rare, the most notable exception being the Ewens sampling formula, and its two-parameter \\nextension by Pitman. When one adds an extra structure to the partitions \\nlike a linear order on the set of blocks and regenerative properties, some \\nrepresentation theorems allow to get more precise information on the distribution. In these notes we survey recent developments of the theory of \\nregenerative partitions and compositions. In particular, we discuss connection between ordered and unordered structures, regenerative properties of \\nthe Ewens-Pitman partitions, and asymptotics of the number of components.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2009-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/10-PS163\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-PS163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-PS163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 29

摘要

金曼的划分结构理论,通过自然抽样程序,将有限划分与假设的无限总体联系起来。这种分区的显式分布公式很少,最明显的例外是evens抽样公式,以及Pitman对它的双参数扩展。当一个人在分区中添加一个额外的结构,比如在区块集合上的线性顺序和再生属性,一些表示定理允许获得更精确的分布信息。在这些笔记中,我们概述了再生分区和组成理论的最新发展。特别地,我们讨论了有序和无序结构之间的联系,Ewens-Pitman划分的再生性质,以及分量数的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regeneration in random combinatorial structures
Kingman’s theory of partition structures relates, via a natural sampling procedure, finite partitions to hypothetical infinite populations. Explicit formulas for distributions of such partitions are rare, the most notable exception being the Ewens sampling formula, and its two-parameter extension by Pitman. When one adds an extra structure to the partitions like a linear order on the set of blocks and regenerative properties, some representation theorems allow to get more precise information on the distribution. In these notes we survey recent developments of the theory of regenerative partitions and compositions. In particular, we discuss connection between ordered and unordered structures, regenerative properties of the Ewens-Pitman partitions, and asymptotics of the number of components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信