连续状态分支过程的Lamperti表示的证明

IF 1.3 Q2 STATISTICS & PROBABILITY
M. Caballero, A. Lambert, Gerónimo Uribe Bravo
{"title":"连续状态分支过程的Lamperti表示的证明","authors":"M. Caballero, A. Lambert, Gerónimo Uribe Bravo","doi":"10.1214/09-PS154","DOIUrl":null,"url":null,"abstract":"This paper uses two new ingredients, namely stochastic differential equations satisfied by continuous-state branching processes (CSBPs), and a topology under which the Lamperti transformation is continuous, in order to provide self-contained proofs of Lamperti's 1967 representation of CSBPs in terms of spectrally positive Levy processes. The first proof is a direct probabilistic proof, and the second one uses approximations by discrete processes, for which the Lamperti representation is evident.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2008-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Proof(s) of the Lamperti representation of Continuous-State Branching Processes\",\"authors\":\"M. Caballero, A. Lambert, Gerónimo Uribe Bravo\",\"doi\":\"10.1214/09-PS154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses two new ingredients, namely stochastic differential equations satisfied by continuous-state branching processes (CSBPs), and a topology under which the Lamperti transformation is continuous, in order to provide self-contained proofs of Lamperti's 1967 representation of CSBPs in terms of spectrally positive Levy processes. The first proof is a direct probabilistic proof, and the second one uses approximations by discrete processes, for which the Lamperti representation is evident.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2008-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/09-PS154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-PS154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 112

摘要

本文利用连续状态分支过程(csbp)所满足的随机微分方程和Lamperti变换为连续的拓扑两种新成分,给出了Lamperti在谱正Levy过程中的1967年csbp表示的自包含证明。第一个证明是直接的概率证明,第二个证明使用离散过程的近似,其Lamperti表示是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof(s) of the Lamperti representation of Continuous-State Branching Processes
This paper uses two new ingredients, namely stochastic differential equations satisfied by continuous-state branching processes (CSBPs), and a topology under which the Lamperti transformation is continuous, in order to provide self-contained proofs of Lamperti's 1967 representation of CSBPs in terms of spectrally positive Levy processes. The first proof is a direct probabilistic proof, and the second one uses approximations by discrete processes, for which the Lamperti representation is evident.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信