正交和三角结构Mo-V-W-O晶体配合氧化物的合成及其催化剂应用

Q1 Materials Science
Chuntian Qiu, Chen C Chen, S. Ishikawa, Zhenxin Zhang, T. Murayama, W. Ueda
{"title":"正交和三角结构Mo-V-W-O晶体配合氧化物的合成及其催化剂应用","authors":"Chuntian Qiu, Chen C Chen, S. Ishikawa, Zhenxin Zhang, T. Murayama, W. Ueda","doi":"10.1179/2055075814Y.0000000009","DOIUrl":null,"url":null,"abstract":"Abstract Crystalline Mo–V–W–O complex oxides with the orthorhombic or trigonal structure were synthesized by a hydrothermal method. Those Mo–V–W–O samples with various amounts of tungsten were characterized by inductively coupled plasma atomic emission spectroscopy, TEM, STEM–EDX, X-ray diffraction, Rietveld analysis, and a N2 adsorption method. It was found for the first case that an additional metal such as W can be successfully incorporated into the trigonal Mo–V–O structure by using (CH3CH2NH3)2Mo3O10.The alkylammonium cation acted as a structural stabilizer that was requisite for the formation of a trigonal structure when additional metal ions were present. For the orthorhombic Mo–V–W–O structure, introduction of W into the orthorhombic structure caused a rod segregation effect by which nanoscale crystals formed and the external surface area greatly increased. Additionally, these Mo–V–W–O materials were applied as catalysts for the gas phase selective oxidation of acrolein to acrylic acid. The best catalyst was assigned to the orthorhombic Mo–V–O–W7.5, which possessed an ordered arrangement of heptagonal and hexagonal channels and a large external surface area.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075814Y.0000000009","citationCount":"3","resultStr":"{\"title\":\"Synthesis of crystalline Mo–V–W–O complex oxides with orthorhombic and trigonal structures and their application as catalysts\",\"authors\":\"Chuntian Qiu, Chen C Chen, S. Ishikawa, Zhenxin Zhang, T. Murayama, W. Ueda\",\"doi\":\"10.1179/2055075814Y.0000000009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Crystalline Mo–V–W–O complex oxides with the orthorhombic or trigonal structure were synthesized by a hydrothermal method. Those Mo–V–W–O samples with various amounts of tungsten were characterized by inductively coupled plasma atomic emission spectroscopy, TEM, STEM–EDX, X-ray diffraction, Rietveld analysis, and a N2 adsorption method. It was found for the first case that an additional metal such as W can be successfully incorporated into the trigonal Mo–V–O structure by using (CH3CH2NH3)2Mo3O10.The alkylammonium cation acted as a structural stabilizer that was requisite for the formation of a trigonal structure when additional metal ions were present. For the orthorhombic Mo–V–W–O structure, introduction of W into the orthorhombic structure caused a rod segregation effect by which nanoscale crystals formed and the external surface area greatly increased. Additionally, these Mo–V–W–O materials were applied as catalysts for the gas phase selective oxidation of acrolein to acrylic acid. The best catalyst was assigned to the orthorhombic Mo–V–O–W7.5, which possessed an ordered arrangement of heptagonal and hexagonal channels and a large external surface area.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1179/2055075814Y.0000000009\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/2055075814Y.0000000009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075814Y.0000000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

摘要采用水热法合成了具有正交或三角结构的Mo-V-W-O晶体配合氧化物。采用电感耦合等离子体原子发射光谱、TEM、STEM-EDX、x射线衍射、Rietveld分析和N2吸附法对不同钨含量的Mo-V-W-O样品进行了表征。在第一种情况下,使用(CH3CH2NH3)2Mo3O10可以成功地将W等附加金属加入到三角Mo-V-O结构中。烷基铵阳离子作为一种结构稳定剂,当存在额外的金属离子时,它是形成三角结构所必需的。对于正交晶型Mo-V-W-O结构,W的引入引起了棒偏析效应,形成了纳米级晶体,大大增加了外表面积。此外,还将这些Mo-V-W-O材料用作丙烯醛气相选择性氧化制丙烯酸的催化剂。正交型Mo-V-O-W7.5催化剂具有七方和六方通道排列有序、外表面积大的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of crystalline Mo–V–W–O complex oxides with orthorhombic and trigonal structures and their application as catalysts
Abstract Crystalline Mo–V–W–O complex oxides with the orthorhombic or trigonal structure were synthesized by a hydrothermal method. Those Mo–V–W–O samples with various amounts of tungsten were characterized by inductively coupled plasma atomic emission spectroscopy, TEM, STEM–EDX, X-ray diffraction, Rietveld analysis, and a N2 adsorption method. It was found for the first case that an additional metal such as W can be successfully incorporated into the trigonal Mo–V–O structure by using (CH3CH2NH3)2Mo3O10.The alkylammonium cation acted as a structural stabilizer that was requisite for the formation of a trigonal structure when additional metal ions were present. For the orthorhombic Mo–V–W–O structure, introduction of W into the orthorhombic structure caused a rod segregation effect by which nanoscale crystals formed and the external surface area greatly increased. Additionally, these Mo–V–W–O materials were applied as catalysts for the gas phase selective oxidation of acrolein to acrylic acid. The best catalyst was assigned to the orthorhombic Mo–V–O–W7.5, which possessed an ordered arrangement of heptagonal and hexagonal channels and a large external surface area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信