Ce1−x−yMxCuyO2−δ (M = Zr, Hf和Th)催化剂上载体对CO吸附和CO + O2反应的影响

Q1 Materials Science
Tinku Baidya, P. Bera
{"title":"Ce1−x−yMxCuyO2−δ (M = Zr, Hf和Th)催化剂上载体对CO吸附和CO + O2反应的影响","authors":"Tinku Baidya, P. Bera","doi":"10.1179/2055075815Y.0000000004","DOIUrl":null,"url":null,"abstract":"Adsorption of CO as well as CO+O2 reaction over Cu2+ ion substituted Ce1 − xMxO2 (M = Zr, Hf and Th) supports have been studied by DRIFTS. Linear Cu+–CO bands are observed over all catalysts upon introduction of CO. But, Cu+–CO band positions are shifted to little higher frequencies in Ce0.68M0.25Cu0.07O2 − δ compared to Ce0.93Cu0.07O2 − δ. However, Cu+–CO bands are in same positions when CO and O2 are adsorbed simultaneously over all the catalysts. Ramping the temperature in the DRIFTS cell after simultaneous CO and O2 adsorption shows the formation of CO2 as well as decrease of CO. Comparison of intensities of CO2 bands of different catalysts as a function of temperature indicates that Ce0.68Th0.25Cu0.07O2 − δ shows lowest temperature CO oxidation among all the catalysts that is because of its more electron withdrawing power. Graphical Abstract","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075815Y.0000000004","citationCount":"11","resultStr":"{\"title\":\"Investigation of support effect on CO adsorption and CO + O2 reaction over Ce1 − x − yMxCuyO2 − δ (M = Zr, Hf and Th) catalysts by in situ DRIFTS\",\"authors\":\"Tinku Baidya, P. Bera\",\"doi\":\"10.1179/2055075815Y.0000000004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adsorption of CO as well as CO+O2 reaction over Cu2+ ion substituted Ce1 − xMxO2 (M = Zr, Hf and Th) supports have been studied by DRIFTS. Linear Cu+–CO bands are observed over all catalysts upon introduction of CO. But, Cu+–CO band positions are shifted to little higher frequencies in Ce0.68M0.25Cu0.07O2 − δ compared to Ce0.93Cu0.07O2 − δ. However, Cu+–CO bands are in same positions when CO and O2 are adsorbed simultaneously over all the catalysts. Ramping the temperature in the DRIFTS cell after simultaneous CO and O2 adsorption shows the formation of CO2 as well as decrease of CO. Comparison of intensities of CO2 bands of different catalysts as a function of temperature indicates that Ce0.68Th0.25Cu0.07O2 − δ shows lowest temperature CO oxidation among all the catalysts that is because of its more electron withdrawing power. Graphical Abstract\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1179/2055075815Y.0000000004\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/2055075815Y.0000000004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075815Y.0000000004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

摘要

用DRIFTS研究了Cu2+离子取代Ce1−xMxO2 (M = Zr, Hf和Th)载体对CO和CO+O2的吸附反应。在ce0.68 m0.25 cu0.070 o2−δ中,Cu+ -CO的频带移位频率略高于ce0.93 cu0.070 o2−δ。然而,当CO和O2同时吸附在所有催化剂上时,Cu+ -CO带的位置相同。同时吸附CO和O2后,在DRIFTS电池中升高温度,CO2的形成和CO的减少。比较不同催化剂的CO2谱带强度随温度的变化可知,Ce0.68Th0.25Cu0.07O2−δ在所有催化剂中表现出最低的CO氧化温度,这是因为Ce0.68Th0.25Cu0.07O2−δ具有更强的吸电子能力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of support effect on CO adsorption and CO + O2 reaction over Ce1 − x − yMxCuyO2 − δ (M = Zr, Hf and Th) catalysts by in situ DRIFTS
Adsorption of CO as well as CO+O2 reaction over Cu2+ ion substituted Ce1 − xMxO2 (M = Zr, Hf and Th) supports have been studied by DRIFTS. Linear Cu+–CO bands are observed over all catalysts upon introduction of CO. But, Cu+–CO band positions are shifted to little higher frequencies in Ce0.68M0.25Cu0.07O2 − δ compared to Ce0.93Cu0.07O2 − δ. However, Cu+–CO bands are in same positions when CO and O2 are adsorbed simultaneously over all the catalysts. Ramping the temperature in the DRIFTS cell after simultaneous CO and O2 adsorption shows the formation of CO2 as well as decrease of CO. Comparison of intensities of CO2 bands of different catalysts as a function of temperature indicates that Ce0.68Th0.25Cu0.07O2 − δ shows lowest temperature CO oxidation among all the catalysts that is because of its more electron withdrawing power. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信