M. Dad, H. Fredriksson, J. van de Loosdrecht, P. Thüne, J. Niemantsverdriet
{"title":"由胶体纳米颗粒制备的均匀双金属FeMn fisher - tropsch模型催化剂中锰促进剂对铁的稳定作用","authors":"M. Dad, H. Fredriksson, J. van de Loosdrecht, P. Thüne, J. Niemantsverdriet","doi":"10.1179/2055075815Y.0000000003","DOIUrl":null,"url":null,"abstract":"Abstract A systematic study was carried out to investigate the response of monodisperse supported Fe and FeMn nanoparticles to treatments in O2, H2 and H2/CO at temperatures between 270 and 400°C. Uniform size (7–14 nm), Fe and mixed FeMn nanoparticles were synthesised by applying thermal decomposition of Fe- and Mn-oleate complexes in a high boiling point solvent. By combining X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, the phase composition and morphology of the model catalysts were studied. Energy-dispersive X-ray analysis shows that the catalyst particles have the expected composition of Fe and Mn. Well-defined crystallite phases [maghemite (γ-Fe2O3) and mixed FeMn-spinel] were observed after calcination at 350°C in Ar/O2 using XPS analysis. Upon subsequent treatments in H2 and H2/CO the crystal phases changed from maghemite (γ-Fe2O3) to metallic Fe, Fe carbide and graphitic C. Using Mn as a promoter influences the nanoparticle size achieved during the fabrication of Fe nanoparticles and improves their stability against morphological change and agglomeration during reduction and Fischer–Tropsch synthesis conditions.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1179/2055075815Y.0000000003","citationCount":"21","resultStr":"{\"title\":\"Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer–Tropsch model catalysts prepared from colloidal nanoparticles\",\"authors\":\"M. Dad, H. Fredriksson, J. van de Loosdrecht, P. Thüne, J. Niemantsverdriet\",\"doi\":\"10.1179/2055075815Y.0000000003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A systematic study was carried out to investigate the response of monodisperse supported Fe and FeMn nanoparticles to treatments in O2, H2 and H2/CO at temperatures between 270 and 400°C. Uniform size (7–14 nm), Fe and mixed FeMn nanoparticles were synthesised by applying thermal decomposition of Fe- and Mn-oleate complexes in a high boiling point solvent. By combining X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, the phase composition and morphology of the model catalysts were studied. Energy-dispersive X-ray analysis shows that the catalyst particles have the expected composition of Fe and Mn. Well-defined crystallite phases [maghemite (γ-Fe2O3) and mixed FeMn-spinel] were observed after calcination at 350°C in Ar/O2 using XPS analysis. Upon subsequent treatments in H2 and H2/CO the crystal phases changed from maghemite (γ-Fe2O3) to metallic Fe, Fe carbide and graphitic C. Using Mn as a promoter influences the nanoparticle size achieved during the fabrication of Fe nanoparticles and improves their stability against morphological change and agglomeration during reduction and Fischer–Tropsch synthesis conditions.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1179/2055075815Y.0000000003\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/2055075815Y.0000000003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/2055075815Y.0000000003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer–Tropsch model catalysts prepared from colloidal nanoparticles
Abstract A systematic study was carried out to investigate the response of monodisperse supported Fe and FeMn nanoparticles to treatments in O2, H2 and H2/CO at temperatures between 270 and 400°C. Uniform size (7–14 nm), Fe and mixed FeMn nanoparticles were synthesised by applying thermal decomposition of Fe- and Mn-oleate complexes in a high boiling point solvent. By combining X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, the phase composition and morphology of the model catalysts were studied. Energy-dispersive X-ray analysis shows that the catalyst particles have the expected composition of Fe and Mn. Well-defined crystallite phases [maghemite (γ-Fe2O3) and mixed FeMn-spinel] were observed after calcination at 350°C in Ar/O2 using XPS analysis. Upon subsequent treatments in H2 and H2/CO the crystal phases changed from maghemite (γ-Fe2O3) to metallic Fe, Fe carbide and graphitic C. Using Mn as a promoter influences the nanoparticle size achieved during the fabrication of Fe nanoparticles and improves their stability against morphological change and agglomeration during reduction and Fischer–Tropsch synthesis conditions.