{"title":"一项初步研究表明,rs361525多态性不会增加慢性阻塞性肺疾病患者α -1抗胰蛋白酶缺乏患者单核细胞肿瘤坏死因子α的产生。","authors":"Jennie M Gane, Robert A Stockley, Elizabeth Sapey","doi":"10.1186/s12952-015-0039-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polymorphisms in the TNF-A gene have been associated with chronic obstructive pulmonary disease (COPD) in some case-control studies. Previous work has shown that COPD/chronic bronchitis subjects with alpha-1 antitrypsin deficiency with the rs361525 TNF-α single nucleotide polymorphism have 100 times more TNF-in spontaneous sputum than disease matched controls. Our objective was to determine if the presence of this polymorphism increased TNF-α production by blood monocytes from COPD subjects.</p><p><strong>Findings: </strong>Monocytes from 18 COPD/alpha-1 antitrypsin deficient subjects, with and without the rs361525 polymorphism, were cultured in the presence or absence of lipopolysaccharide. Cell-free supernatants were analyzed by ELISA and real-time PCR performed using cDNA from extracted RNA. Baseline expression of TNF-α messenger RNA was no different between the groups. No difference in messenger RNA or secreted protein was observed over time in un-stimulated cells. TNF-α messenger RNA expression and protein was not higher in lipopolysaccharide-stimulated monocytes from subjects with the polymorphism compared to cells from patients with the wild-type allele.</p><p><strong>Conclusions: </strong>This small pilot study did not provide an explanation for the findings of earlier observations of the association of the rs361525 polymorphism with TNF-α in airways secretions. Possible reasons for the lack of concordance include the study of blood rather than tissue cells, the use of a single stimulant rather than biological secretions and the need for far greater subject numbers to overcome intra-subject variation in monocyte TNF-α production.</p>","PeriodicalId":73849,"journal":{"name":"Journal of negative results in biomedicine","volume":"14 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665865/pdf/","citationCount":"0","resultStr":"{\"title\":\"The rs361525 polymorphism does not increase production of tumor necrosis factor alpha by monocytes from alpha-1 antitrypsin deficient subjects with chronic obstructive pulmonary disease - a pilot study.\",\"authors\":\"Jennie M Gane, Robert A Stockley, Elizabeth Sapey\",\"doi\":\"10.1186/s12952-015-0039-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polymorphisms in the TNF-A gene have been associated with chronic obstructive pulmonary disease (COPD) in some case-control studies. Previous work has shown that COPD/chronic bronchitis subjects with alpha-1 antitrypsin deficiency with the rs361525 TNF-α single nucleotide polymorphism have 100 times more TNF-in spontaneous sputum than disease matched controls. Our objective was to determine if the presence of this polymorphism increased TNF-α production by blood monocytes from COPD subjects.</p><p><strong>Findings: </strong>Monocytes from 18 COPD/alpha-1 antitrypsin deficient subjects, with and without the rs361525 polymorphism, were cultured in the presence or absence of lipopolysaccharide. Cell-free supernatants were analyzed by ELISA and real-time PCR performed using cDNA from extracted RNA. Baseline expression of TNF-α messenger RNA was no different between the groups. No difference in messenger RNA or secreted protein was observed over time in un-stimulated cells. TNF-α messenger RNA expression and protein was not higher in lipopolysaccharide-stimulated monocytes from subjects with the polymorphism compared to cells from patients with the wild-type allele.</p><p><strong>Conclusions: </strong>This small pilot study did not provide an explanation for the findings of earlier observations of the association of the rs361525 polymorphism with TNF-α in airways secretions. Possible reasons for the lack of concordance include the study of blood rather than tissue cells, the use of a single stimulant rather than biological secretions and the need for far greater subject numbers to overcome intra-subject variation in monocyte TNF-α production.</p>\",\"PeriodicalId\":73849,\"journal\":{\"name\":\"Journal of negative results in biomedicine\",\"volume\":\"14 1\",\"pages\":\"20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4665865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of negative results in biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12952-015-0039-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of negative results in biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12952-015-0039-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The rs361525 polymorphism does not increase production of tumor necrosis factor alpha by monocytes from alpha-1 antitrypsin deficient subjects with chronic obstructive pulmonary disease - a pilot study.
Background: Polymorphisms in the TNF-A gene have been associated with chronic obstructive pulmonary disease (COPD) in some case-control studies. Previous work has shown that COPD/chronic bronchitis subjects with alpha-1 antitrypsin deficiency with the rs361525 TNF-α single nucleotide polymorphism have 100 times more TNF-in spontaneous sputum than disease matched controls. Our objective was to determine if the presence of this polymorphism increased TNF-α production by blood monocytes from COPD subjects.
Findings: Monocytes from 18 COPD/alpha-1 antitrypsin deficient subjects, with and without the rs361525 polymorphism, were cultured in the presence or absence of lipopolysaccharide. Cell-free supernatants were analyzed by ELISA and real-time PCR performed using cDNA from extracted RNA. Baseline expression of TNF-α messenger RNA was no different between the groups. No difference in messenger RNA or secreted protein was observed over time in un-stimulated cells. TNF-α messenger RNA expression and protein was not higher in lipopolysaccharide-stimulated monocytes from subjects with the polymorphism compared to cells from patients with the wild-type allele.
Conclusions: This small pilot study did not provide an explanation for the findings of earlier observations of the association of the rs361525 polymorphism with TNF-α in airways secretions. Possible reasons for the lack of concordance include the study of blood rather than tissue cells, the use of a single stimulant rather than biological secretions and the need for far greater subject numbers to overcome intra-subject variation in monocyte TNF-α production.