图形处理器上稀疏和密集矩阵的快速截断奇异值分解

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
A. Tomás, E. S. Quintana‐Ortí, H. Anzt
{"title":"图形处理器上稀疏和密集矩阵的快速截断奇异值分解","authors":"A. Tomás, E. S. Quintana‐Ortí, H. Anzt","doi":"10.1177/10943420231179699","DOIUrl":null,"url":null,"abstract":"We investigate the solution of low-rank matrix approximation problems using the truncated singular value decomposition (SVD). For this purpose, we develop and optimize graphics processing unit (GPU) implementations for the randomized SVD and a blocked variant of the Lanczos approach. Our work takes advantage of the fact that the two methods are composed of very similar linear algebra building blocks, which can be assembled using numerical kernels from existing high-performance linear algebra libraries. Furthermore, the experiments with several sparse matrices arising in representative real-world applications and synthetic dense test matrices reveal a performance advantage of the block Lanczos algorithm when targeting the same approximation accuracy.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"380 - 393"},"PeriodicalIF":3.5000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast truncated SVD of sparse and dense matrices on graphics processors\",\"authors\":\"A. Tomás, E. S. Quintana‐Ortí, H. Anzt\",\"doi\":\"10.1177/10943420231179699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the solution of low-rank matrix approximation problems using the truncated singular value decomposition (SVD). For this purpose, we develop and optimize graphics processing unit (GPU) implementations for the randomized SVD and a blocked variant of the Lanczos approach. Our work takes advantage of the fact that the two methods are composed of very similar linear algebra building blocks, which can be assembled using numerical kernels from existing high-performance linear algebra libraries. Furthermore, the experiments with several sparse matrices arising in representative real-world applications and synthetic dense test matrices reveal a performance advantage of the block Lanczos algorithm when targeting the same approximation accuracy.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"37 1\",\"pages\":\"380 - 393\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420231179699\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231179699","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

研究了利用截断奇异值分解(SVD)求解低秩矩阵逼近问题的方法。为此,我们开发并优化了随机SVD和Lanczos方法的阻塞变体的图形处理单元(GPU)实现。我们的工作利用了这两种方法由非常相似的线性代数构建块组成的事实,这些构建块可以使用现有高性能线性代数库中的数值核进行组装。此外,在具有代表性的实际应用中出现的几个稀疏矩阵和合成密集测试矩阵的实验表明,在相同的近似精度下,块Lanczos算法具有性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast truncated SVD of sparse and dense matrices on graphics processors
We investigate the solution of low-rank matrix approximation problems using the truncated singular value decomposition (SVD). For this purpose, we develop and optimize graphics processing unit (GPU) implementations for the randomized SVD and a blocked variant of the Lanczos approach. Our work takes advantage of the fact that the two methods are composed of very similar linear algebra building blocks, which can be assembled using numerical kernels from existing high-performance linear algebra libraries. Furthermore, the experiments with several sparse matrices arising in representative real-world applications and synthetic dense test matrices reveal a performance advantage of the block Lanczos algorithm when targeting the same approximation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信