具有三联体丢失的全局局部注意和标签平滑交叉熵的人再识别

Q2 Decision Sciences
Nha Tran, Toan Nguyen, Minh Nguyen, Khiet Luong, Tai Lam
{"title":"具有三联体丢失的全局局部注意和标签平滑交叉熵的人再识别","authors":"Nha Tran, Toan Nguyen, Minh Nguyen, Khiet Luong, Tai Lam","doi":"10.11591/ijai.v12.i4.pp1883-1891","DOIUrl":null,"url":null,"abstract":"Person re-identification (Person Re-ID) is a research direction on tracking and identifying people in surveillance camera systems with non-overlapping camera perspectives. Despite much research on this topic, there are still some practical problems that Person Re-ID has not yet solved, in reality, human objects can easily be obscured by obstructions such as other people, trees, luggage, umbrellas, signs, cars, motorbikes. In this paper, we propose a multibranch deep learning network architecture. In which one branch is for the representation of global features and two branches are for the representation of local features. Dividing the input image into small parts and changing the number of parts between the two branches helps the model to represent the features better. In addition, we add an attention module to the ResNet50 backbone that enhances important human characteristics and eliminates irrelevant information. To improve robustness, the model is trained by combining triplet loss and label smoothing cross-entropy loss (LSCE). Experiments are carried out on datasets Market1501, and duke multi-target multi-camera (DukeMTMC) datasets, our method achieved 96.04% rank-1, 88,11% mean average precision (mAP) on the Market1501 dataset, and 88.78% rank-1, 78,6% mAP on the DukeMTMC dataset. This method achieves performance better than some state-of-the-art methods.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global-local attention with triplet loss and label smoothed crossentropy for person re-identification\",\"authors\":\"Nha Tran, Toan Nguyen, Minh Nguyen, Khiet Luong, Tai Lam\",\"doi\":\"10.11591/ijai.v12.i4.pp1883-1891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification (Person Re-ID) is a research direction on tracking and identifying people in surveillance camera systems with non-overlapping camera perspectives. Despite much research on this topic, there are still some practical problems that Person Re-ID has not yet solved, in reality, human objects can easily be obscured by obstructions such as other people, trees, luggage, umbrellas, signs, cars, motorbikes. In this paper, we propose a multibranch deep learning network architecture. In which one branch is for the representation of global features and two branches are for the representation of local features. Dividing the input image into small parts and changing the number of parts between the two branches helps the model to represent the features better. In addition, we add an attention module to the ResNet50 backbone that enhances important human characteristics and eliminates irrelevant information. To improve robustness, the model is trained by combining triplet loss and label smoothing cross-entropy loss (LSCE). Experiments are carried out on datasets Market1501, and duke multi-target multi-camera (DukeMTMC) datasets, our method achieved 96.04% rank-1, 88,11% mean average precision (mAP) on the Market1501 dataset, and 88.78% rank-1, 78,6% mAP on the DukeMTMC dataset. This method achieves performance better than some state-of-the-art methods.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i4.pp1883-1891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1883-1891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

人员再识别(Person Re-ID)是监控摄像系统中无重叠视角下对人员进行跟踪和识别的研究方向。尽管这方面的研究很多,但仍有一些实际问题没有解决,在现实中,人的物体很容易被其他人、树木、行李、雨伞、标志、汽车、摩托车等障碍物遮挡。在本文中,我们提出了一个多分支深度学习网络架构。其中一个分支用于表示全局特征,两个分支用于表示局部特征。将输入图像分割成小的部分,并在两个分支之间改变部分的数量,有助于模型更好地表示特征。此外,我们在ResNet50主干中添加了一个注意力模块,增强了重要的人类特征并消除了不相关的信息。为了提高模型的鲁棒性,将三重态损失和标记平滑交叉熵损失(LSCE)相结合来训练模型。在Market1501数据集和duke多目标多相机(DukeMTMC)数据集上进行实验,我们的方法在Market1501数据集上的平均精度(mAP)为96.04%,在DukeMTMC数据集上的平均精度(mAP)为88.78%。这种方法的性能优于一些最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global-local attention with triplet loss and label smoothed crossentropy for person re-identification
Person re-identification (Person Re-ID) is a research direction on tracking and identifying people in surveillance camera systems with non-overlapping camera perspectives. Despite much research on this topic, there are still some practical problems that Person Re-ID has not yet solved, in reality, human objects can easily be obscured by obstructions such as other people, trees, luggage, umbrellas, signs, cars, motorbikes. In this paper, we propose a multibranch deep learning network architecture. In which one branch is for the representation of global features and two branches are for the representation of local features. Dividing the input image into small parts and changing the number of parts between the two branches helps the model to represent the features better. In addition, we add an attention module to the ResNet50 backbone that enhances important human characteristics and eliminates irrelevant information. To improve robustness, the model is trained by combining triplet loss and label smoothing cross-entropy loss (LSCE). Experiments are carried out on datasets Market1501, and duke multi-target multi-camera (DukeMTMC) datasets, our method achieved 96.04% rank-1, 88,11% mean average precision (mAP) on the Market1501 dataset, and 88.78% rank-1, 78,6% mAP on the DukeMTMC dataset. This method achieves performance better than some state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信