利用基于层次结构的聚类算法,减少了求解旅行推销员问题所需的时间

Q2 Decision Sciences
Anahita Sabagh Nejad, G. Fazekas
{"title":"利用基于层次结构的聚类算法,减少了求解旅行推销员问题所需的时间","authors":"Anahita Sabagh Nejad, G. Fazekas","doi":"10.11591/ijai.v12.i4.pp1619-1627","DOIUrl":null,"url":null,"abstract":"<div class=\"page\" title=\"Page 1\"><div class=\"layoutArea\"><div class=\"column\"><p>In this study, we compare a cluster-based whale optimization algorithm (WOA) with an uncombined method to find a more optimized solution for a traveling salesman problem (TSP). The main goal is to reduce the time of solving a TSP. First, we solve the TSP with the Whale optimization algorithm, later we solve it with the combined method of solving TSP which uses the clustering method, called BIRCH (balanced iterative reducing and clustering using hierarchies). Birch builds a clustering feature (CF) tree and then applies one of the clustering methods (for ex. K-means) to cluster data. Experiments performed on three datasets show that the convergence time improves by using the combined algorithm.</p></div></div></div>","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm\",\"authors\":\"Anahita Sabagh Nejad, G. Fazekas\",\"doi\":\"10.11591/ijai.v12.i4.pp1619-1627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div class=\\\"page\\\" title=\\\"Page 1\\\"><div class=\\\"layoutArea\\\"><div class=\\\"column\\\"><p>In this study, we compare a cluster-based whale optimization algorithm (WOA) with an uncombined method to find a more optimized solution for a traveling salesman problem (TSP). The main goal is to reduce the time of solving a TSP. First, we solve the TSP with the Whale optimization algorithm, later we solve it with the combined method of solving TSP which uses the clustering method, called BIRCH (balanced iterative reducing and clustering using hierarchies). Birch builds a clustering feature (CF) tree and then applies one of the clustering methods (for ex. K-means) to cluster data. Experiments performed on three datasets show that the convergence time improves by using the combined algorithm.</p></div></div></div>\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i4.pp1619-1627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1619-1627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们比较了基于集群的鲸鱼优化算法(WOA)和非组合方法,以找到一个更优化的旅行推销员问题(TSP)的解决方案。主要目标是减少求解TSP的时间。首先,我们使用Whale优化算法求解TSP,然后我们使用聚类方法求解TSP的组合方法,称为BIRCH (balanced iterative reduction and clustering using hierarchies)。Birch构建了一个聚类特征(CF)树,然后应用其中一种聚类方法(例如K-means)来聚类数据。在三个数据集上进行的实验表明,该组合算法提高了收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm

In this study, we compare a cluster-based whale optimization algorithm (WOA) with an uncombined method to find a more optimized solution for a traveling salesman problem (TSP). The main goal is to reduce the time of solving a TSP. First, we solve the TSP with the Whale optimization algorithm, later we solve it with the combined method of solving TSP which uses the clustering method, called BIRCH (balanced iterative reducing and clustering using hierarchies). Birch builds a clustering feature (CF) tree and then applies one of the clustering methods (for ex. K-means) to cluster data. Experiments performed on three datasets show that the convergence time improves by using the combined algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信