利用人工神经网络对村基金直接现金援助受助人的资格进行评估

Q2 Decision Sciences
Dwi Marisa Midyanti, Syamsul Bahri, S. Suhardi, H. I. Midyanti
{"title":"利用人工神经网络对村基金直接现金援助受助人的资格进行评估","authors":"Dwi Marisa Midyanti, Syamsul Bahri, S. Suhardi, H. I. Midyanti","doi":"10.11591/ijai.v12.i4.pp1611-1618","DOIUrl":null,"url":null,"abstract":"Bantuan Langsung Tunai Dana Desa (BLT-DD), or known as Village Fund Direct Cash Assistance is assistance from the Indonesian government which causes problems and conflicts in the community when the assistance is not on target. The classification algorithm is proven to use in determining BLT-DD recipients. In this study, the radial basis function (RBF) and elman recurrent neural network (ERNN) models compare to classify the eligibility of BLTDD recipients. In the experiment, the optimal performance of the RBF and ERNN compare in determining the eligibility of BLT-DD recipients. Also, it’s compared with the classification algorithm that implements the same data, namely BLT-DD data for Kubu Raya District. The experimental results show the effectiveness of the RBF model in recognizing test data, while the ERNN model is effective in identifying test data. The RBF and ERNN models can achieve the same total accuracy of 98.10%.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eligibility of village fund direct cash assistance recipients using artificial neural network\",\"authors\":\"Dwi Marisa Midyanti, Syamsul Bahri, S. Suhardi, H. I. Midyanti\",\"doi\":\"10.11591/ijai.v12.i4.pp1611-1618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bantuan Langsung Tunai Dana Desa (BLT-DD), or known as Village Fund Direct Cash Assistance is assistance from the Indonesian government which causes problems and conflicts in the community when the assistance is not on target. The classification algorithm is proven to use in determining BLT-DD recipients. In this study, the radial basis function (RBF) and elman recurrent neural network (ERNN) models compare to classify the eligibility of BLTDD recipients. In the experiment, the optimal performance of the RBF and ERNN compare in determining the eligibility of BLT-DD recipients. Also, it’s compared with the classification algorithm that implements the same data, namely BLT-DD data for Kubu Raya District. The experimental results show the effectiveness of the RBF model in recognizing test data, while the ERNN model is effective in identifying test data. The RBF and ERNN models can achieve the same total accuracy of 98.10%.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i4.pp1611-1618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i4.pp1611-1618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

Bantuan Langsung Tunai Dana Desa (BLT-DD),或称为村庄基金直接现金援助,是印度尼西亚政府的援助,当援助没有达到目标时,会在社区中引起问题和冲突。该分类算法已被证明可用于确定BLT-DD接收者。本研究比较了径向基函数(RBF)和elman递归神经网络(ERNN)模型对BLTDD受者资格的分类。在实验中,比较了RBF和ERNN在确定BLT-DD接受者资格方面的最优性能。并与实现相同数据的分类算法,即Kubu Raya区的BLT-DD数据进行了比较。实验结果表明,RBF模型在识别测试数据方面是有效的,而ERNN模型在识别测试数据方面是有效的。RBF和ERNN模型的总准确率均为98.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eligibility of village fund direct cash assistance recipients using artificial neural network
Bantuan Langsung Tunai Dana Desa (BLT-DD), or known as Village Fund Direct Cash Assistance is assistance from the Indonesian government which causes problems and conflicts in the community when the assistance is not on target. The classification algorithm is proven to use in determining BLT-DD recipients. In this study, the radial basis function (RBF) and elman recurrent neural network (ERNN) models compare to classify the eligibility of BLTDD recipients. In the experiment, the optimal performance of the RBF and ERNN compare in determining the eligibility of BLT-DD recipients. Also, it’s compared with the classification algorithm that implements the same data, namely BLT-DD data for Kubu Raya District. The experimental results show the effectiveness of the RBF model in recognizing test data, while the ERNN model is effective in identifying test data. The RBF and ERNN models can achieve the same total accuracy of 98.10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信