Ahmed Jamal Ahmed, Ali Hashim Abbas, Sami Abduljabbar Rashid
{"title":"基于改进蚁群优化的多级信任计算提高无线传感器网络的服务质量","authors":"Ahmed Jamal Ahmed, Ali Hashim Abbas, Sami Abduljabbar Rashid","doi":"10.11591/ijai.v12.i3.pp1224-1237","DOIUrl":null,"url":null,"abstract":"Wireless sensor network (WSN) is the most integral parts of current technology which are used for the real time applications. The major drawbacks in currect technologies are threads due to the creation of false trust values and data congestion. Maximum of the concept of WSNs primarily needs security and optimization. So, we are in the desire to develop a new model which is highly secured and localized. In this paper, we introduced a novel approach namely multi level trust calculation with improved ant colony optimization (MLT-IACO). This approach mainly sub-divided into two sections they are multi level trust calculation which is the combination three levels of trust such as direct trust, indirect trust and random repeat trust. Secondly, improved ant colony optimization technique is used to find the optimal path in the network. By transmitting the data in the optimal path, the congestion and delay of the network is reduced which leads to increase the efficiency. The outcome values are comparatively analyzed based the parameters such as packet delivery ratio, network throughput and average latency. While compared with the earlier research our MLT-IACO approach produce high packet delivery ratio and throughput as well as lower latency and routing overhead.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi level trust calculation with improved ant colony optimization for improving quality of service in wireless sensor network\",\"authors\":\"Ahmed Jamal Ahmed, Ali Hashim Abbas, Sami Abduljabbar Rashid\",\"doi\":\"10.11591/ijai.v12.i3.pp1224-1237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor network (WSN) is the most integral parts of current technology which are used for the real time applications. The major drawbacks in currect technologies are threads due to the creation of false trust values and data congestion. Maximum of the concept of WSNs primarily needs security and optimization. So, we are in the desire to develop a new model which is highly secured and localized. In this paper, we introduced a novel approach namely multi level trust calculation with improved ant colony optimization (MLT-IACO). This approach mainly sub-divided into two sections they are multi level trust calculation which is the combination three levels of trust such as direct trust, indirect trust and random repeat trust. Secondly, improved ant colony optimization technique is used to find the optimal path in the network. By transmitting the data in the optimal path, the congestion and delay of the network is reduced which leads to increase the efficiency. The outcome values are comparatively analyzed based the parameters such as packet delivery ratio, network throughput and average latency. While compared with the earlier research our MLT-IACO approach produce high packet delivery ratio and throughput as well as lower latency and routing overhead.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i3.pp1224-1237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i3.pp1224-1237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
Multi level trust calculation with improved ant colony optimization for improving quality of service in wireless sensor network
Wireless sensor network (WSN) is the most integral parts of current technology which are used for the real time applications. The major drawbacks in currect technologies are threads due to the creation of false trust values and data congestion. Maximum of the concept of WSNs primarily needs security and optimization. So, we are in the desire to develop a new model which is highly secured and localized. In this paper, we introduced a novel approach namely multi level trust calculation with improved ant colony optimization (MLT-IACO). This approach mainly sub-divided into two sections they are multi level trust calculation which is the combination three levels of trust such as direct trust, indirect trust and random repeat trust. Secondly, improved ant colony optimization technique is used to find the optimal path in the network. By transmitting the data in the optimal path, the congestion and delay of the network is reduced which leads to increase the efficiency. The outcome values are comparatively analyzed based the parameters such as packet delivery ratio, network throughput and average latency. While compared with the earlier research our MLT-IACO approach produce high packet delivery ratio and throughput as well as lower latency and routing overhead.