j48决策树模型对变压器溶解气体分析解释的改进

Q2 Decision Sciences
N. A. Bakar, I. S. Chairul, S. Ghani, M. S. Ahmad Khiar, M. Z. Che Wanik
{"title":"j48决策树模型对变压器溶解气体分析解释的改进","authors":"N. A. Bakar, I. S. Chairul, S. Ghani, M. S. Ahmad Khiar, M. Z. Che Wanik","doi":"10.11591/ijai.v12.i1.pp48-56","DOIUrl":null,"url":null,"abstract":"Dissolved gas analysis (DGA) is widely accepted as an effective method to detect incipient faults within power transformers. Gases such as hydrogen, methane, acetylene, ethylene and ethane are normally utilized to identify the transformer fault conditions. Several techniques have been developed to interpret DGA results such as the key gas method, Doernenburg, Rogers, IEC ratio-based methods, Duval Triangles, and the latest Duval Pentagon methods. However, each of these approaches depends on the experts' shared knowledge and experience rather than quantitative scientific methods, therefore different diagnoses may be reported for the same oil sample. To overcome these shortcomings, this paper proposed the use of decision tree method to interpret the transformer health condition based on DGA results. The proposed decision tree model employed three main fault gases; methane, acetylene, ethylene as inputs, and classified the transformer into eight fault conditions. The J48 algorithm is used to train and developed the decision tree model. The performance of the proposed model is validated with the pre-known condition of transformers and compared with the Duval Triangle method. Results show that the proposed model delivers better precision and accuracy in predicting transformer fault conditions compared to DTM with 81% and 69% respectively.","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of transformer dissolved gas analysis interpretation using j48 decision tree model\",\"authors\":\"N. A. Bakar, I. S. Chairul, S. Ghani, M. S. Ahmad Khiar, M. Z. Che Wanik\",\"doi\":\"10.11591/ijai.v12.i1.pp48-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissolved gas analysis (DGA) is widely accepted as an effective method to detect incipient faults within power transformers. Gases such as hydrogen, methane, acetylene, ethylene and ethane are normally utilized to identify the transformer fault conditions. Several techniques have been developed to interpret DGA results such as the key gas method, Doernenburg, Rogers, IEC ratio-based methods, Duval Triangles, and the latest Duval Pentagon methods. However, each of these approaches depends on the experts' shared knowledge and experience rather than quantitative scientific methods, therefore different diagnoses may be reported for the same oil sample. To overcome these shortcomings, this paper proposed the use of decision tree method to interpret the transformer health condition based on DGA results. The proposed decision tree model employed three main fault gases; methane, acetylene, ethylene as inputs, and classified the transformer into eight fault conditions. The J48 algorithm is used to train and developed the decision tree model. The performance of the proposed model is validated with the pre-known condition of transformers and compared with the Duval Triangle method. Results show that the proposed model delivers better precision and accuracy in predicting transformer fault conditions compared to DTM with 81% and 69% respectively.\",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i1.pp48-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp48-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

溶解气体分析(DGA)作为一种检测电力变压器早期故障的有效方法被广泛接受。通常使用氢气、甲烷、乙炔、乙烯和乙烷等气体来识别变压器故障状况。已经开发了几种技术来解释DGA结果,如关键气体法,Doernenburg, Rogers,基于IEC比率的方法,Duval三角形和最新的Duval五角大楼方法。然而,每一种方法都依赖于专家的共享知识和经验,而不是定量的科学方法,因此对于相同的油样可能会报告不同的诊断。为了克服这些缺点,本文提出了基于DGA结果的决策树方法来解释变压器健康状况。所提出的决策树模型采用了三种主要故障气体;甲烷、乙炔、乙烯作为输入,并将变压器分为八种故障工况。采用J48算法对决策树模型进行训练和开发。在已知变压器状态下验证了该模型的有效性,并与Duval三角方法进行了比较。结果表明,与DTM相比,该模型对变压器故障状态的预测精度和准确度分别达到81%和69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of transformer dissolved gas analysis interpretation using j48 decision tree model
Dissolved gas analysis (DGA) is widely accepted as an effective method to detect incipient faults within power transformers. Gases such as hydrogen, methane, acetylene, ethylene and ethane are normally utilized to identify the transformer fault conditions. Several techniques have been developed to interpret DGA results such as the key gas method, Doernenburg, Rogers, IEC ratio-based methods, Duval Triangles, and the latest Duval Pentagon methods. However, each of these approaches depends on the experts' shared knowledge and experience rather than quantitative scientific methods, therefore different diagnoses may be reported for the same oil sample. To overcome these shortcomings, this paper proposed the use of decision tree method to interpret the transformer health condition based on DGA results. The proposed decision tree model employed three main fault gases; methane, acetylene, ethylene as inputs, and classified the transformer into eight fault conditions. The J48 algorithm is used to train and developed the decision tree model. The performance of the proposed model is validated with the pre-known condition of transformers and compared with the Duval Triangle method. Results show that the proposed model delivers better precision and accuracy in predicting transformer fault conditions compared to DTM with 81% and 69% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信