{"title":"轨道桶大小的管式量热计在喷气燃料火灾中的热测量","authors":"M. Greiner, M. D. Valle, C. López, V. Figueroa","doi":"10.1177/1042391513487002","DOIUrl":null,"url":null,"abstract":"Three large-scale fire tests were conducted in which a 2.4-m-(8-ft)-dia., 4.6-m-(15-ft)-long, 25-mm-(1-inch)-wall-thickness mild-steel pipe calorimeter was centered 1 m above a 7.9-m-dia. basin containing 7.57 m3 (2000 gal) of jet fuel. The wind conditions, calorimeter wall temperatures, and temperatures of foil radiant heat flux gages near the calorimeter were measured at several locations as functions of time during and after the fires. Video and still photography from several directions were used to monitor the calorimeter’s engulfment in flames. The objective of these tests was to determine how the fuel consumption rate, calorimeter coverage in flames and the calorimeter temperatures varied with wind conditions. These data can be used to benchmark computational and engineering models of heat transfer from large pool fires to thermally-massive objects. Those types of models are used to predict the response of rail-car-sized used-nuclear-fuel transport packages in severe accidents. The first two tests h...","PeriodicalId":50192,"journal":{"name":"Journal of Fire Protection Engineering","volume":"23 1","pages":"300-319"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1042391513487002","citationCount":"5","resultStr":"{\"title\":\"Thermal measurements of a rail-cask-size pipe-calorimeter in jet fuel fires\",\"authors\":\"M. Greiner, M. D. Valle, C. López, V. Figueroa\",\"doi\":\"10.1177/1042391513487002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three large-scale fire tests were conducted in which a 2.4-m-(8-ft)-dia., 4.6-m-(15-ft)-long, 25-mm-(1-inch)-wall-thickness mild-steel pipe calorimeter was centered 1 m above a 7.9-m-dia. basin containing 7.57 m3 (2000 gal) of jet fuel. The wind conditions, calorimeter wall temperatures, and temperatures of foil radiant heat flux gages near the calorimeter were measured at several locations as functions of time during and after the fires. Video and still photography from several directions were used to monitor the calorimeter’s engulfment in flames. The objective of these tests was to determine how the fuel consumption rate, calorimeter coverage in flames and the calorimeter temperatures varied with wind conditions. These data can be used to benchmark computational and engineering models of heat transfer from large pool fires to thermally-massive objects. Those types of models are used to predict the response of rail-car-sized used-nuclear-fuel transport packages in severe accidents. The first two tests h...\",\"PeriodicalId\":50192,\"journal\":{\"name\":\"Journal of Fire Protection Engineering\",\"volume\":\"23 1\",\"pages\":\"300-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1042391513487002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Protection Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1042391513487002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Protection Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1042391513487002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal measurements of a rail-cask-size pipe-calorimeter in jet fuel fires
Three large-scale fire tests were conducted in which a 2.4-m-(8-ft)-dia., 4.6-m-(15-ft)-long, 25-mm-(1-inch)-wall-thickness mild-steel pipe calorimeter was centered 1 m above a 7.9-m-dia. basin containing 7.57 m3 (2000 gal) of jet fuel. The wind conditions, calorimeter wall temperatures, and temperatures of foil radiant heat flux gages near the calorimeter were measured at several locations as functions of time during and after the fires. Video and still photography from several directions were used to monitor the calorimeter’s engulfment in flames. The objective of these tests was to determine how the fuel consumption rate, calorimeter coverage in flames and the calorimeter temperatures varied with wind conditions. These data can be used to benchmark computational and engineering models of heat transfer from large pool fires to thermally-massive objects. Those types of models are used to predict the response of rail-car-sized used-nuclear-fuel transport packages in severe accidents. The first two tests h...