Marco Bernardi, Brett Hosking, C. Petrioli, B. Bett, Daniel Jones, V. Huvenne, Rachel Marlow, M. Furlong, S. McPhail, A. Munafò
{"title":"AURORA,一个用于机器人海洋探测的多传感器数据集","authors":"Marco Bernardi, Brett Hosking, C. Petrioli, B. Bett, Daniel Jones, V. Huvenne, Rachel Marlow, M. Furlong, S. McPhail, A. Munafò","doi":"10.1177/02783649221078612","DOIUrl":null,"url":null,"abstract":"The current maturity of autonomous underwater vehicles (AUVs) has made their deployment practical and cost-effective, such that many scientific, industrial and military applications now include AUV operations. However, the logistical difficulties and high costs of operating at sea are still critical limiting factors in further technology development, the benchmarking of new techniques and the reproducibility of research results. To overcome this problem, this paper presents a freely available dataset suitable to test control, navigation, sensor processing algorithms and others tasks. This dataset combines AUV navigation data, sidescan sonar, multibeam echosounder data and seafloor camera image data, and associated sensor acquisition metadata to provide a detailed characterisation of surveys carried out by the National Oceanography Centre (NOC) in the Greater Haig Fras Marine Conservation Zone (MCZ) of the U.K in 2015.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"461 - 469"},"PeriodicalIF":7.5000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"AURORA, a multi-sensor dataset for robotic ocean exploration\",\"authors\":\"Marco Bernardi, Brett Hosking, C. Petrioli, B. Bett, Daniel Jones, V. Huvenne, Rachel Marlow, M. Furlong, S. McPhail, A. Munafò\",\"doi\":\"10.1177/02783649221078612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current maturity of autonomous underwater vehicles (AUVs) has made their deployment practical and cost-effective, such that many scientific, industrial and military applications now include AUV operations. However, the logistical difficulties and high costs of operating at sea are still critical limiting factors in further technology development, the benchmarking of new techniques and the reproducibility of research results. To overcome this problem, this paper presents a freely available dataset suitable to test control, navigation, sensor processing algorithms and others tasks. This dataset combines AUV navigation data, sidescan sonar, multibeam echosounder data and seafloor camera image data, and associated sensor acquisition metadata to provide a detailed characterisation of surveys carried out by the National Oceanography Centre (NOC) in the Greater Haig Fras Marine Conservation Zone (MCZ) of the U.K in 2015.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"41 1\",\"pages\":\"461 - 469\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649221078612\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649221078612","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
AURORA, a multi-sensor dataset for robotic ocean exploration
The current maturity of autonomous underwater vehicles (AUVs) has made their deployment practical and cost-effective, such that many scientific, industrial and military applications now include AUV operations. However, the logistical difficulties and high costs of operating at sea are still critical limiting factors in further technology development, the benchmarking of new techniques and the reproducibility of research results. To overcome this problem, this paper presents a freely available dataset suitable to test control, navigation, sensor processing algorithms and others tasks. This dataset combines AUV navigation data, sidescan sonar, multibeam echosounder data and seafloor camera image data, and associated sensor acquisition metadata to provide a detailed characterisation of surveys carried out by the National Oceanography Centre (NOC) in the Greater Haig Fras Marine Conservation Zone (MCZ) of the U.K in 2015.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.