不可分离自反Banach空间与内部空的直径完全集合的改造

IF 0.6 4区 数学 Q3 MATHEMATICS
W. Kaczor, T. Kuczumow, S. Reich, Mariola Walczyk
{"title":"不可分离自反Banach空间与内部空的直径完全集合的改造","authors":"W. Kaczor, T. Kuczumow, S. Reich, Mariola Walczyk","doi":"10.11650/tjm/201205","DOIUrl":null,"url":null,"abstract":"We prove that for each nonseparable and reflexive Banach space (X, ‖ · ‖X) with the nonstrict Opial and Kadec–Klee properties, there exists an equivalent norm ‖ · ‖0 such that the Banach space (X, ‖ · ‖0) is LUR and contains a diametrically complete set with empty interior.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Renormings of Nonseparable Reflexive Banach Spaces and Diametrically Complete Sets with Empty Interior\",\"authors\":\"W. Kaczor, T. Kuczumow, S. Reich, Mariola Walczyk\",\"doi\":\"10.11650/tjm/201205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for each nonseparable and reflexive Banach space (X, ‖ · ‖X) with the nonstrict Opial and Kadec–Klee properties, there exists an equivalent norm ‖ · ‖0 such that the Banach space (X, ‖ · ‖0) is LUR and contains a diametrically complete set with empty interior.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/201205\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/201205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

证明了对于每一个具有非严格Opial和Kadec-Klee性质的不可分自反的Banach空间(X,‖·‖X),存在一个等价范数‖·‖0,使得该Banach空间(X,‖·‖0)是LUR且包含一个内部空的径完全集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormings of Nonseparable Reflexive Banach Spaces and Diametrically Complete Sets with Empty Interior
We prove that for each nonseparable and reflexive Banach space (X, ‖ · ‖X) with the nonstrict Opial and Kadec–Klee properties, there exists an equivalent norm ‖ · ‖0 such that the Banach space (X, ‖ · ‖0) is LUR and contains a diametrically complete set with empty interior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信