On进一步强化了Hardy-Hilbert不等式

IF 1 Q1 MATHEMATICS
Lü Zhongxue
{"title":"On进一步强化了Hardy-Hilbert不等式","authors":"Lü Zhongxue","doi":"10.1155/S0161171204205270","DOIUrl":null,"url":null,"abstract":"We obtain an inequality for the weight coefficient ω ( q , n ) ( 1$\" id=\"E2\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> q > 1 , 1 / q + 1 / q = 1 , n ∈ ℕ ) in the form ω ( q , n ) = : ∑ m = 1 ∞ ( 1 / ( m + n ) ) ( n / m ) 1 / q π / sin ( π / p ) − 1 / ( 2 n 1 / p + ( 2 / a ) n − 1 / q ) where 0 a 147 / 45 , as n ≥ 3 ; 0 a ( 1 − C ) / ( 2 C − 1 ) , as n = 1 , 2 , and C is an Euler constant. We show a generalization and improvement of Hilbert's inequalities. The results of the paper by Yang and Debnath are improved.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2004 1","pages":"1423-1427"},"PeriodicalIF":1.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171204205270","citationCount":"0","resultStr":"{\"title\":\"On further strengthened Hardy-Hilbert's inequality\",\"authors\":\"Lü Zhongxue\",\"doi\":\"10.1155/S0161171204205270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain an inequality for the weight coefficient ω ( q , n ) ( 1$\\\" id=\\\"E2\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> q > 1 , 1 / q + 1 / q = 1 , n ∈ ℕ ) in the form ω ( q , n ) = : ∑ m = 1 ∞ ( 1 / ( m + n ) ) ( n / m ) 1 / q π / sin ( π / p ) − 1 / ( 2 n 1 / p + ( 2 / a ) n − 1 / q ) where 0 a 147 / 45 , as n ≥ 3 ; 0 a ( 1 − C ) / ( 2 C − 1 ) , as n = 1 , 2 , and C is an Euler constant. We show a generalization and improvement of Hilbert's inequalities. The results of the paper by Yang and Debnath are improved.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":\"2004 1\",\"pages\":\"1423-1427\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171204205270\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171204205270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171204205270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到一个不平等for the weight coefficientω(q, n)(1美元= id“E2”xmlns: mml = >“http://www.w3.org/1998/Math/MathML q > 1, q - q + 1 = 1, n∈ℕ)在theformω(q, m = 1∞(n) =:∑1 / (m + n) (n / m) 1 p - qπ(π/辛)−1 / (2 n / p + (1 / a) n−1 / q)在0 - a美国147 - 45,n≥3;0 1−C (a) / C(2−1),美国n = 1, 2和C是一个Eulerconstant。我们向大家展示由杨和黛纳特出售的文件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On further strengthened Hardy-Hilbert's inequality
We obtain an inequality for the weight coefficient ω ( q , n ) ( 1$" id="E2" xmlns:mml="http://www.w3.org/1998/Math/MathML"> q > 1 , 1 / q + 1 / q = 1 , n ∈ ℕ ) in the form ω ( q , n ) = : ∑ m = 1 ∞ ( 1 / ( m + n ) ) ( n / m ) 1 / q π / sin ( π / p ) − 1 / ( 2 n 1 / p + ( 2 / a ) n − 1 / q ) where 0 a 147 / 45 , as n ≥ 3 ; 0 a ( 1 − C ) / ( 2 C − 1 ) , as n = 1 , 2 , and C is an Euler constant. We show a generalization and improvement of Hilbert's inequalities. The results of the paper by Yang and Debnath are improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信