{"title":"具有谱参数相关边界条件的Klein-Gordon s波方程的谱性质","authors":"Gülen Başcanbaz-Tunca","doi":"10.1155/S0161171204203088","DOIUrl":null,"url":null,"abstract":"We investigate the spectrum of the differential operator L λ defined by the Klein-Gordon s -wave equation y ″ + ( λ − q ( x ) ) 2 y = 0 , x ∈ ℝ + = [ 0 , ∞ ) , subject to the spectral parameter-dependent boundary condition y ′ ( 0 ) − ( a λ + b ) y ( 0 ) = 0 in the space L 2 ( ℝ + ) , where a ≠ ± i , b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove that L λ has a finite number of eigenvalues and spectral singularities with finite multiplicities if the conditions lim x → ∞ q ( x ) = 0 , sup x ∈ R + { exp ( ϵ x ) | q ′ ( x ) | } ∞ , 0$\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> ϵ > 0 , hold. Finally we show the properties of the principal functions corresponding to the spectral singularities.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171204203088","citationCount":"1","resultStr":"{\"title\":\"Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition\",\"authors\":\"Gülen Başcanbaz-Tunca\",\"doi\":\"10.1155/S0161171204203088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the spectrum of the differential operator L λ defined by the Klein-Gordon s -wave equation y ″ + ( λ − q ( x ) ) 2 y = 0 , x ∈ ℝ + = [ 0 , ∞ ) , subject to the spectral parameter-dependent boundary condition y ′ ( 0 ) − ( a λ + b ) y ( 0 ) = 0 in the space L 2 ( ℝ + ) , where a ≠ ± i , b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove that L λ has a finite number of eigenvalues and spectral singularities with finite multiplicities if the conditions lim x → ∞ q ( x ) = 0 , sup x ∈ R + { exp ( ϵ x ) | q ′ ( x ) | } ∞ , 0$\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> ϵ > 0 , hold. Finally we show the properties of the principal functions corresponding to the spectral singularities.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171204203088\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171204203088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171204203088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
我们研究微分算子的谱Lλ定义的克莱因-戈登s波方程y”+(λ−q (x)) 2 y = 0, x∈ℝ+ =[0,∞),光谱parameter-dependent边界条件y '(0)−(λ+ b) y (0) = 0 L 2(ℝ+),一个≠±我,b是复杂的常数,q是复值函数。讨论谱,我们证明了L λ具有有限个数的特征值和谱奇点,如果条件lim x→∞q (x) = 0, sup x∈R + {exp (λ λ) | q ' (x) |}∞,0$" xmlns:mml="http://www.w3.org/1998/Math/MathML"> λ > 0,成立。最后给出了谱奇异点对应的主函数的性质。
Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
We investigate the spectrum of the differential operator L λ defined by the Klein-Gordon s -wave equation y ″ + ( λ − q ( x ) ) 2 y = 0 , x ∈ ℝ + = [ 0 , ∞ ) , subject to the spectral parameter-dependent boundary condition y ′ ( 0 ) − ( a λ + b ) y ( 0 ) = 0 in the space L 2 ( ℝ + ) , where a ≠ ± i , b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove that L λ has a finite number of eigenvalues and spectral singularities with finite multiplicities if the conditions lim x → ∞ q ( x ) = 0 , sup x ∈ R + { exp ( ϵ x ) | q ′ ( x ) | } ∞ , 0$" xmlns:mml="http://www.w3.org/1998/Math/MathML"> ϵ > 0 , hold. Finally we show the properties of the principal functions corresponding to the spectral singularities.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.