第一类sonine型积分方程

IF 1 Q1 MATHEMATICS
S. Samko, R. Cardoso
{"title":"第一类sonine型积分方程","authors":"S. Samko, R. Cardoso","doi":"10.1155/S0161171203211455","DOIUrl":null,"url":null,"abstract":"A Volterra integral equation of the first kind Kϕ(x) :≡ � x −∞ k(x −t)ϕ(t)dt = f( x) with a locally integrable kernel k(x) ∈ L loc (R 1) is called Sonine equation if there exists another locally integrable kernel �(x) such thatx 0 k(x − t)�(t)dt ≡ 1( lo- cally integrable divisors of the unit, with respect to the operation of convolu- tion). The formal inversion ϕ(x) = (d/dx) � x 0 �(x − t)f (t)dt is well known, but it does not work, for example, on solutions in the spaces X = Lp(R 1 ) and is not defined on the whole range K(X). We develop many properties of Sonine ker- nels which allow us—in a very general case—to construct the real inverse oper- ator, within the framework of the spaces Lp(R 1 ), in Marchaud form: K −1 f( x)= �( ∞)f (x)+ � ∞ 0 � � (t)(f (x −t)−f (x))dt with the interpretation of the convergence of this \"hypersingular\" integral in Lp-norm. The description of the range K(X) is given; it already requires the language of Orlicz spaces even in the case when X is","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2003 1","pages":"3609-3632"},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203211455","citationCount":"75","resultStr":"{\"title\":\"INTEGRAL EQUATIONS OF THE FIRST KIND OF SONINE TYPE\",\"authors\":\"S. Samko, R. Cardoso\",\"doi\":\"10.1155/S0161171203211455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Volterra integral equation of the first kind Kϕ(x) :≡ � x −∞ k(x −t)ϕ(t)dt = f( x) with a locally integrable kernel k(x) ∈ L loc (R 1) is called Sonine equation if there exists another locally integrable kernel �(x) such thatx 0 k(x − t)�(t)dt ≡ 1( lo- cally integrable divisors of the unit, with respect to the operation of convolu- tion). The formal inversion ϕ(x) = (d/dx) � x 0 �(x − t)f (t)dt is well known, but it does not work, for example, on solutions in the spaces X = Lp(R 1 ) and is not defined on the whole range K(X). We develop many properties of Sonine ker- nels which allow us—in a very general case—to construct the real inverse oper- ator, within the framework of the spaces Lp(R 1 ), in Marchaud form: K −1 f( x)= �( ∞)f (x)+ � ∞ 0 � � (t)(f (x −t)−f (x))dt with the interpretation of the convergence of this \\\"hypersingular\\\" integral in Lp-norm. The description of the range K(X) is given; it already requires the language of Orlicz spaces even in the case when X is\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":\"2003 1\",\"pages\":\"3609-3632\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171203211455\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171203211455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203211455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 75

摘要

第一类的Volterra积分方程Kϕ(x):≡x−∞k(x−t)ϕ(t)dt = f(x),并且局部可积核k(x)∈L loc (r1),如果存在另一个局部可积核k(x−t) k(t)dt≡1(关于卷积运算的单位的局部可积因子),则称为Sonine方程。形式的反转φ (x) = (d/dx) × × 0 × (x−t)f (t)dt是众所周知的,但它不起作用,例如,在空间x = Lp(r1)中的解上,并且在整个范围K(x)上没有定义。我们发展了Sonine克尔核的许多性质,这些性质允许我们在非常一般的情况下,在空间Lp(r1)的框架内以Marchaud形式构造实逆算子:K−1 f(x)=(∞)f (x)+(∞0)(t)(f (x−t)−f (x))dt,并解释了这个“超奇异”积分在Lp范数中的收敛性。给出了范围K(X)的描述;它已经需要Orlicz空间的语言,即使在X是的情况下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTEGRAL EQUATIONS OF THE FIRST KIND OF SONINE TYPE
A Volterra integral equation of the first kind Kϕ(x) :≡ � x −∞ k(x −t)ϕ(t)dt = f( x) with a locally integrable kernel k(x) ∈ L loc (R 1) is called Sonine equation if there exists another locally integrable kernel �(x) such thatx 0 k(x − t)�(t)dt ≡ 1( lo- cally integrable divisors of the unit, with respect to the operation of convolu- tion). The formal inversion ϕ(x) = (d/dx) � x 0 �(x − t)f (t)dt is well known, but it does not work, for example, on solutions in the spaces X = Lp(R 1 ) and is not defined on the whole range K(X). We develop many properties of Sonine ker- nels which allow us—in a very general case—to construct the real inverse oper- ator, within the framework of the spaces Lp(R 1 ), in Marchaud form: K −1 f( x)= �( ∞)f (x)+ � ∞ 0 � � (t)(f (x −t)−f (x))dt with the interpretation of the convergence of this "hypersingular" integral in Lp-norm. The description of the range K(X) is given; it already requires the language of Orlicz spaces even in the case when X is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信