{"title":"没有kÄhler度量的上同调kÄhler流形","authors":"M. Fernández, V. Muñoz, J. Santisteban","doi":"10.1155/S0161171203211327","DOIUrl":null,"url":null,"abstract":"We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kahler and do not admit Kahler metric since their fundamental groups cannot be the fundamental group of any compact Kahler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kahler metrics was an open question. The formality and the hard Lefschetz property are studied for the symplectic submanifolds constructed by Auroux (1997) and some consequences are discussed.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203211327","citationCount":"22","resultStr":"{\"title\":\"COHOMOLOGICALLY KÄHLER MANIFOLDS WITH NO KÄHLER METRICS\",\"authors\":\"M. Fernández, V. Muñoz, J. Santisteban\",\"doi\":\"10.1155/S0161171203211327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kahler and do not admit Kahler metric since their fundamental groups cannot be the fundamental group of any compact Kahler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kahler metrics was an open question. The formality and the hard Lefschetz property are studied for the symplectic submanifolds constructed by Auroux (1997) and some consequences are discussed.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171203211327\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171203211327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203211327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
COHOMOLOGICALLY KÄHLER MANIFOLDS WITH NO KÄHLER METRICS
We show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kahler and do not admit Kahler metric since their fundamental groups cannot be the fundamental group of any compact Kahler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kahler metrics was an open question. The formality and the hard Lefschetz property are studied for the symplectic submanifolds constructed by Auroux (1997) and some consequences are discussed.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.