Baum-Connes猜想,非交换poincar对偶性,以及自由群的边界

IF 1 Q1 MATHEMATICS
Heath Emerson
{"title":"Baum-Connes猜想,非交换poincar<s:1>对偶性,以及自由群的边界","authors":"Heath Emerson","doi":"10.1155/S0161171203209169","DOIUrl":null,"url":null,"abstract":"For every hyperbolic group Γ with Gromov boundary ∂Γ, one can form the cross product C∗-algebra C(∂Γ)⋊Γ. For each such algebra, we construct a canonical K-homology class. This class induces a Poincare duality map K∗(C(∂Γ)⋊Γ)→K∗","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2004-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203209169","citationCount":"10","resultStr":"{\"title\":\"The Baum-Connes conjecture, noncommutative Poincaré duality,and the boundary of the free group\",\"authors\":\"Heath Emerson\",\"doi\":\"10.1155/S0161171203209169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every hyperbolic group Γ with Gromov boundary ∂Γ, one can form the cross product C∗-algebra C(∂Γ)⋊Γ. For each such algebra, we construct a canonical K-homology class. This class induces a Poincare duality map K∗(C(∂Γ)⋊Γ)→K∗\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2004-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171203209169\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171203209169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203209169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

对于每一个具有Gromov边界∂Γ的双曲群Γ,可以形成叉积C∗-代数C(∂Γ) Γ。对于每一个这样的代数,我们构造一个标准k -同调类。该类导出一个庞加莱对偶映射K∗(C(∂Γ) Γ)→K∗
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Baum-Connes conjecture, noncommutative Poincaré duality,and the boundary of the free group
For every hyperbolic group Γ with Gromov boundary ∂Γ, one can form the cross product C∗-algebra C(∂Γ)⋊Γ. For each such algebra, we construct a canonical K-homology class. This class induces a Poincare duality map K∗(C(∂Γ)⋊Γ)→K∗
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES Mathematics-Mathematics (miscellaneous)
CiteScore
2.30
自引率
8.30%
发文量
60
审稿时长
17 weeks
期刊介绍: The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信