{"title":"ß-Klotho上调兴奋性氨基酸转运蛋白EAAT1和EAAT2","authors":"J. Warsi, Abeer Abousaab, F. Lang","doi":"10.1159/000442604","DOIUrl":null,"url":null,"abstract":"Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH)2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3) and EAAT2 (SLC1A2), Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM)-induced inward current (IGlu) taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml) in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM). Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":"23 1","pages":"59 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000442604","citationCount":"13","resultStr":"{\"title\":\"Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho\",\"authors\":\"J. Warsi, Abeer Abousaab, F. Lang\",\"doi\":\"10.1159/000442604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH)2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3) and EAAT2 (SLC1A2), Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM)-induced inward current (IGlu) taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml) in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM). Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.\",\"PeriodicalId\":19171,\"journal\":{\"name\":\"Neurosignals\",\"volume\":\"23 1\",\"pages\":\"59 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000442604\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurosignals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000442604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000442604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho
Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH)2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3) and EAAT2 (SLC1A2), Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM)-induced inward current (IGlu) taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml) in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM). Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.
期刊介绍:
Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.