{"title":"i -拓扑空间中的α-模糊紧性","authors":"V. Gregori, H. Künzi","doi":"10.1155/S0161171203204233","DOIUrl":null,"url":null,"abstract":"Using a gradation of openness in a (Chang fuzzy) I -topological space, we introduce degrees of compactness that we call α -fuzzy compactness (where α belongs to the unit interval), so extending the concept of compactness due to C. L. Chang. We obtain a Baire category theorem for α -locally compact spaces and construct a one-point α -fuzzy compactification of an I -topological space.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203204233","citationCount":"1","resultStr":"{\"title\":\"α-fuzzy compactness in I-topological spaces\",\"authors\":\"V. Gregori, H. Künzi\",\"doi\":\"10.1155/S0161171203204233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a gradation of openness in a (Chang fuzzy) I -topological space, we introduce degrees of compactness that we call α -fuzzy compactness (where α belongs to the unit interval), so extending the concept of compactness due to C. L. Chang. We obtain a Baire category theorem for α -locally compact spaces and construct a one-point α -fuzzy compactification of an I -topological space.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171203204233\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171203204233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203204233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在(Chang fuzzy) I -拓扑空间中,我们利用开放度的分级,引入了我们称之为α -模糊紧度的紧度(其中α属于单位区间),从而扩展了C. L. Chang的紧度概念。得到了α -局部紧化空间的一个Baire范畴定理,构造了I -拓扑空间的一个一点α -模糊紧化。
Using a gradation of openness in a (Chang fuzzy) I -topological space, we introduce degrees of compactness that we call α -fuzzy compactness (where α belongs to the unit interval), so extending the concept of compactness due to C. L. Chang. We obtain a Baire category theorem for α -locally compact spaces and construct a one-point α -fuzzy compactification of an I -topological space.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.