{"title":"关于八维幂零丝形李代数","authors":"P. Barbari, A. Kobotis","doi":"10.1155/S016117120311201X","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to determine both the Zariski constructible set of characteristically nilpotent filiform Lie algebras g of dimension 8 and that of the set of nilpotent filiform Lie algebras whose group of automorphisms consists of unipotent automorphisms, in the variety of filiform Lie algebras of dimension 8 over C.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2003-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S016117120311201X","citationCount":"0","resultStr":"{\"title\":\"On nilpotent filiform Lie algebras of dimension eight\",\"authors\":\"P. Barbari, A. Kobotis\",\"doi\":\"10.1155/S016117120311201X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to determine both the Zariski constructible set of characteristically nilpotent filiform Lie algebras g of dimension 8 and that of the set of nilpotent filiform Lie algebras whose group of automorphisms consists of unipotent automorphisms, in the variety of filiform Lie algebras of dimension 8 over C.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2003-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S016117120311201X\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S016117120311201X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S016117120311201X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On nilpotent filiform Lie algebras of dimension eight
The aim of this paper is to determine both the Zariski constructible set of characteristically nilpotent filiform Lie algebras g of dimension 8 and that of the set of nilpotent filiform Lie algebras whose group of automorphisms consists of unipotent automorphisms, in the variety of filiform Lie algebras of dimension 8 over C.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.