{"title":"Sturm-Liouville微分算子积的自伴随扩展的定义域","authors":"S. Ibrahim","doi":"10.1155/S0161171203008020","DOIUrl":null,"url":null,"abstract":"The second-order symmetric Sturm-Liouville differential expressions τ 1 , τ 2 , … , τ n with real coefficients are considered on the interval I = ( a , b ) , − ∞ ≤ a b ≤ ∞ . It is shown that the characterization of singular selfadjoint boundary conditions involves the sesquilinear form associated with the product of Sturm-Liouville differential expressions and elements of the maximal domain of the product operators, and it is an exact parallel of the regular case. This characterization is an extension of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987), Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":"2003 1","pages":"695-709"},"PeriodicalIF":1.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S0161171203008020","citationCount":"1","resultStr":"{\"title\":\"On the domain of selfadjoint extension of the product of Sturm-Liouville differential operators\",\"authors\":\"S. Ibrahim\",\"doi\":\"10.1155/S0161171203008020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second-order symmetric Sturm-Liouville differential expressions τ 1 , τ 2 , … , τ n with real coefficients are considered on the interval I = ( a , b ) , − ∞ ≤ a b ≤ ∞ . It is shown that the characterization of singular selfadjoint boundary conditions involves the sesquilinear form associated with the product of Sturm-Liouville differential expressions and elements of the maximal domain of the product operators, and it is an exact parallel of the regular case. This characterization is an extension of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987), Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":\"2003 1\",\"pages\":\"695-709\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S0161171203008020\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S0161171203008020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S0161171203008020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the domain of selfadjoint extension of the product of Sturm-Liouville differential operators
The second-order symmetric Sturm-Liouville differential expressions τ 1 , τ 2 , … , τ n with real coefficients are considered on the interval I = ( a , b ) , − ∞ ≤ a b ≤ ∞ . It is shown that the characterization of singular selfadjoint boundary conditions involves the sesquilinear form associated with the product of Sturm-Liouville differential expressions and elements of the maximal domain of the product operators, and it is an exact parallel of the regular case. This characterization is an extension of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987), Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.