有限体积方法下的非线性椭圆问题

S. Khattri
{"title":"有限体积方法下的非线性椭圆问题","authors":"S. Khattri","doi":"10.1155/DENM/2006/31797","DOIUrl":null,"url":null,"abstract":"We present a finite volume discretization of the nonlinear elliptic problems. The discretization results in a nonlinear algebraic system of equations. A Newton-Krylov algorithm is also presented for solving the system of nonlinear algebraic equations. Numerically solving nonlinear partial differential equations consists of discretizing the nonlinear partial differential equation and then solving the formed nonlinear system of equations. We demonstrate the convergence of the discretization scheme and also the convergence of the Newton solver through a variety of practical numerical examples.","PeriodicalId":30100,"journal":{"name":"Differential Equations and Nonlinear Mechanics","volume":"2006 1","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/DENM/2006/31797","citationCount":"7","resultStr":"{\"title\":\"Nonlinear elliptic problems with the method of finite volumes\",\"authors\":\"S. Khattri\",\"doi\":\"10.1155/DENM/2006/31797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a finite volume discretization of the nonlinear elliptic problems. The discretization results in a nonlinear algebraic system of equations. A Newton-Krylov algorithm is also presented for solving the system of nonlinear algebraic equations. Numerically solving nonlinear partial differential equations consists of discretizing the nonlinear partial differential equation and then solving the formed nonlinear system of equations. We demonstrate the convergence of the discretization scheme and also the convergence of the Newton solver through a variety of practical numerical examples.\",\"PeriodicalId\":30100,\"journal\":{\"name\":\"Differential Equations and Nonlinear Mechanics\",\"volume\":\"2006 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/DENM/2006/31797\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Nonlinear Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/DENM/2006/31797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Nonlinear Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/DENM/2006/31797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

给出了非线性椭圆型问题的有限体积离散化方法。离散化得到一个非线性代数方程组。本文还提出了一种求解非线性代数方程组的Newton-Krylov算法。数值求解非线性偏微分方程是将非线性偏微分方程离散化,然后求解形成的非线性方程组。通过一系列实际的数值算例,证明了离散化方案的收敛性和牛顿解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear elliptic problems with the method of finite volumes
We present a finite volume discretization of the nonlinear elliptic problems. The discretization results in a nonlinear algebraic system of equations. A Newton-Krylov algorithm is also presented for solving the system of nonlinear algebraic equations. Numerically solving nonlinear partial differential equations consists of discretizing the nonlinear partial differential equation and then solving the formed nonlinear system of equations. We demonstrate the convergence of the discretization scheme and also the convergence of the Newton solver through a variety of practical numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信