{"title":"特定色温下多波段白光光源的优化","authors":"S. Soltic, A. Chalmers","doi":"10.1155/2015/263791","DOIUrl":null,"url":null,"abstract":"This paper describes an effective approach for the optimization of multiband spectra to produce prospective white-light spectra having specific color temperatures. The optimization process employs a genetic algorithm known as differential evolution, which aims to minimize the color rendering differences between a prospective white-light spectrum and its corresponding reference illuminant. Color rendering is assessed by calculating the CIEDE2000 color difference (ΔE00) for 14 CIE test colors under the two sources. Optimized white-light spectra were matched to three CIE standard illuminants, that is, A (2856 K), D50 (5003 K), and D65 (6504 K). Optimal solutions for three- and four-band 25 and 50 nm Gaussian spectra are presented and analyzed, together with mixed 4-LED spectra that were optimized in the same way. In all cases, the simulated sources were shown to provide color rendering of such quality that ΔE00av ≤ 2.24 units. Such white-light sources would likely find wide acceptance in numerous lighting applications.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2015 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/263791","citationCount":"2","resultStr":"{\"title\":\"Optimization of Multiband White-Light Illuminants for Specified Color Temperatures\",\"authors\":\"S. Soltic, A. Chalmers\",\"doi\":\"10.1155/2015/263791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an effective approach for the optimization of multiband spectra to produce prospective white-light spectra having specific color temperatures. The optimization process employs a genetic algorithm known as differential evolution, which aims to minimize the color rendering differences between a prospective white-light spectrum and its corresponding reference illuminant. Color rendering is assessed by calculating the CIEDE2000 color difference (ΔE00) for 14 CIE test colors under the two sources. Optimized white-light spectra were matched to three CIE standard illuminants, that is, A (2856 K), D50 (5003 K), and D65 (6504 K). Optimal solutions for three- and four-band 25 and 50 nm Gaussian spectra are presented and analyzed, together with mixed 4-LED spectra that were optimized in the same way. In all cases, the simulated sources were shown to provide color rendering of such quality that ΔE00av ≤ 2.24 units. Such white-light sources would likely find wide acceptance in numerous lighting applications.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2015 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/263791\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/263791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/263791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Optimization of Multiband White-Light Illuminants for Specified Color Temperatures
This paper describes an effective approach for the optimization of multiband spectra to produce prospective white-light spectra having specific color temperatures. The optimization process employs a genetic algorithm known as differential evolution, which aims to minimize the color rendering differences between a prospective white-light spectrum and its corresponding reference illuminant. Color rendering is assessed by calculating the CIEDE2000 color difference (ΔE00) for 14 CIE test colors under the two sources. Optimized white-light spectra were matched to three CIE standard illuminants, that is, A (2856 K), D50 (5003 K), and D65 (6504 K). Optimal solutions for three- and four-band 25 and 50 nm Gaussian spectra are presented and analyzed, together with mixed 4-LED spectra that were optimized in the same way. In all cases, the simulated sources were shown to provide color rendering of such quality that ΔE00av ≤ 2.24 units. Such white-light sources would likely find wide acceptance in numerous lighting applications.
期刊介绍:
Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.