{"title":"利用模糊逻辑聚类技术反演地电数据估算地下层模型","authors":"A. Raj, D. Oliver, Y. Srinivas","doi":"10.1155/2015/134834","DOIUrl":null,"url":null,"abstract":"Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy -means clustering, fuzzy -means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS) training on synthetic data. Here in this approach, graphical user interface (GUI) was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity), while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth). A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2015-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/134834","citationCount":"0","resultStr":"{\"title\":\"Geoelectrical Data Inversion by Clustering Techniques of Fuzzy Logic to Estimate the Subsurface Layer Model\",\"authors\":\"A. Raj, D. Oliver, Y. Srinivas\",\"doi\":\"10.1155/2015/134834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy -means clustering, fuzzy -means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS) training on synthetic data. Here in this approach, graphical user interface (GUI) was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity), while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth). A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2015-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/134834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/134834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/134834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geoelectrical Data Inversion by Clustering Techniques of Fuzzy Logic to Estimate the Subsurface Layer Model
Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzy -means clustering, fuzzy -means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS) training on synthetic data. Here in this approach, graphical user interface (GUI) was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity), while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth). A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.