基于支持向量机与BES优化算法的光伏发电故障检测与分类

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
R. J. K. Koloko, P. Ele, R. Wamkeue, A. Melingui
{"title":"基于支持向量机与BES优化算法的光伏发电故障检测与分类","authors":"R. J. K. Koloko, P. Ele, R. Wamkeue, A. Melingui","doi":"10.1155/2022/6841861","DOIUrl":null,"url":null,"abstract":"In this work, an innovative approach based on the estimation of the photovoltaic generator (GPV) parameters from the Bald Eagle Search (BES) optimization algorithm, associated with a support vector machine (SVM) classification algorithm, allowed to highlight a new tool for the classification of the signatures of shading and moisture PV defects. It recognizes signatures generated by the GPV in healthy and erroneous operation using the optimized parametric vector and classifies defects using the same optimized vector. The technique emphasizes the resilience of parameter estimate in terms of error on all parameters. The classification accuracy is 93%. The residuals between the estimated curve in healthy operation with a minimum error of the order of 10-4 and the one at fault are used as an indicator of faults.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Detection and Classification of a Photovoltaic Generator Using the BES Optimization Algorithm Associated with SVM\",\"authors\":\"R. J. K. Koloko, P. Ele, R. Wamkeue, A. Melingui\",\"doi\":\"10.1155/2022/6841861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an innovative approach based on the estimation of the photovoltaic generator (GPV) parameters from the Bald Eagle Search (BES) optimization algorithm, associated with a support vector machine (SVM) classification algorithm, allowed to highlight a new tool for the classification of the signatures of shading and moisture PV defects. It recognizes signatures generated by the GPV in healthy and erroneous operation using the optimized parametric vector and classifies defects using the same optimized vector. The technique emphasizes the resilience of parameter estimate in terms of error on all parameters. The classification accuracy is 93%. The residuals between the estimated curve in healthy operation with a minimum error of the order of 10-4 and the one at fault are used as an indicator of faults.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6841861\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6841861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,一种基于秃鹰搜索(BES)优化算法估计光伏发电机(GPV)参数的创新方法,结合支持向量机(SVM)分类算法,突出了一种用于分类遮阳和潮湿光伏缺陷特征的新工具。利用优化后的参数向量识别GPV在健康和错误操作中产生的特征,并利用相同的优化向量对缺陷进行分类。该技术强调参数估计在所有参数上的误差的弹性。分类准确率为93%。用最小误差为10-4阶的健康运行估计曲线与故障估计曲线之间的残差作为故障指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Detection and Classification of a Photovoltaic Generator Using the BES Optimization Algorithm Associated with SVM
In this work, an innovative approach based on the estimation of the photovoltaic generator (GPV) parameters from the Bald Eagle Search (BES) optimization algorithm, associated with a support vector machine (SVM) classification algorithm, allowed to highlight a new tool for the classification of the signatures of shading and moisture PV defects. It recognizes signatures generated by the GPV in healthy and erroneous operation using the optimized parametric vector and classifies defects using the same optimized vector. The technique emphasizes the resilience of parameter estimate in terms of error on all parameters. The classification accuracy is 93%. The residuals between the estimated curve in healthy operation with a minimum error of the order of 10-4 and the one at fault are used as an indicator of faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信