微型gt前沿支撑系统的有限元设计

IF 1.5 Q3 ENGINEERING, MECHANICAL
F. Stefani, R. Francesconi, Andrea Perrone
{"title":"微型gt前沿支撑系统的有限元设计","authors":"F. Stefani, R. Francesconi, Andrea Perrone","doi":"10.1155/2018/9016906","DOIUrl":null,"url":null,"abstract":"The design of the support system (shaft, bearings, and mechanical coupling devices) of the rotor plays a key role in the development of efficient micro-gas turbines (micro-GTs) for distributed power generation. Foil air bearings are the most widespread technical solution well suited to design a reliable support system, although they cannot withstand a large number of start-stop cycles of the units. In order to overcome such limitation, we have recently proposed an innovative support system that takes advantage of spline couplings and two bearing types (e.g., air and rolling-element bearings). The devised support system employs splines as both convenient coupling systems and actuators for the load partition between the two bearing types. In the present work, the helical spline coupling is studied by means of structural FEM analyses including contact simulation in order to design the support system. Numerical results confirm previous findings in that the load transfer through the spline coupling is mainly a function of the helix angle. In addition, friction factor and structural stiffness cannot be neglected in the accurate design of the spline coupling. Such design parameters are now included in the proposed design procedure, which formerly assumed frictionless contact and rigid bodies.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9016906","citationCount":"1","resultStr":"{\"title\":\"FEM Design of a Cutting-Edge Support System for Micro-GT\",\"authors\":\"F. Stefani, R. Francesconi, Andrea Perrone\",\"doi\":\"10.1155/2018/9016906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of the support system (shaft, bearings, and mechanical coupling devices) of the rotor plays a key role in the development of efficient micro-gas turbines (micro-GTs) for distributed power generation. Foil air bearings are the most widespread technical solution well suited to design a reliable support system, although they cannot withstand a large number of start-stop cycles of the units. In order to overcome such limitation, we have recently proposed an innovative support system that takes advantage of spline couplings and two bearing types (e.g., air and rolling-element bearings). The devised support system employs splines as both convenient coupling systems and actuators for the load partition between the two bearing types. In the present work, the helical spline coupling is studied by means of structural FEM analyses including contact simulation in order to design the support system. Numerical results confirm previous findings in that the load transfer through the spline coupling is mainly a function of the helix angle. In addition, friction factor and structural stiffness cannot be neglected in the accurate design of the spline coupling. Such design parameters are now included in the proposed design procedure, which formerly assumed frictionless contact and rigid bodies.\",\"PeriodicalId\":44668,\"journal\":{\"name\":\"Advances in Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/9016906\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/9016906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/9016906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

转子支撑系统(轴、轴承和机械耦合装置)的设计是开发高效分布式微型燃气轮机的关键。铝箔空气轴承是最广泛的技术解决方案,非常适合设计一个可靠的支持系统,虽然他们不能承受大量的启停循环的单位。为了克服这种限制,我们最近提出了一种创新的支持系统,该系统利用花键联轴器和两种轴承类型(例如,空气和滚动轴承)。所设计的支撑系统采用花键作为方便的耦合系统和执行器,用于两种轴承类型之间的负载分配。本文采用结构有限元分析方法对螺旋花键联轴器进行了研究,并对其进行了接触仿真。数值结果证实了先前的研究结果,即通过花键联轴器的载荷传递主要是螺旋角的函数。此外,在花键联轴器的精确设计中,摩擦系数和结构刚度也不能忽略。这些设计参数现在包含在提议的设计程序中,该程序以前假设无摩擦接触和刚体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FEM Design of a Cutting-Edge Support System for Micro-GT
The design of the support system (shaft, bearings, and mechanical coupling devices) of the rotor plays a key role in the development of efficient micro-gas turbines (micro-GTs) for distributed power generation. Foil air bearings are the most widespread technical solution well suited to design a reliable support system, although they cannot withstand a large number of start-stop cycles of the units. In order to overcome such limitation, we have recently proposed an innovative support system that takes advantage of spline couplings and two bearing types (e.g., air and rolling-element bearings). The devised support system employs splines as both convenient coupling systems and actuators for the load partition between the two bearing types. In the present work, the helical spline coupling is studied by means of structural FEM analyses including contact simulation in order to design the support system. Numerical results confirm previous findings in that the load transfer through the spline coupling is mainly a function of the helix angle. In addition, friction factor and structural stiffness cannot be neglected in the accurate design of the spline coupling. Such design parameters are now included in the proposed design procedure, which formerly assumed frictionless contact and rigid bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信