用伏安法在线监测大马士革铜电镀槽:伏安数据的多块和分层化学计量分析变量的选择

IF 2.3 Q3 ELECTROCHEMISTRY
A. Jaworski, H. Wikiel, K. Wikiel
{"title":"用伏安法在线监测大马士革铜电镀槽:伏安数据的多块和分层化学计量分析变量的选择","authors":"A. Jaworski, H. Wikiel, K. Wikiel","doi":"10.1155/2017/4289517","DOIUrl":null,"url":null,"abstract":"The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2017 1","pages":"1-13"},"PeriodicalIF":2.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4289517","citationCount":"3","resultStr":"{\"title\":\"Online Monitoring of Copper Damascene Electroplating Bath by Voltammetry: Selection of Variables for Multiblock and Hierarchical Chemometric Analysis of Voltammetric Data\",\"authors\":\"A. Jaworski, H. Wikiel, K. Wikiel\",\"doi\":\"10.1155/2017/4289517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.\",\"PeriodicalId\":13933,\"journal\":{\"name\":\"International journal of electrochemistry\",\"volume\":\"2017 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2017/4289517\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/4289517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/4289517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 3

摘要

实时分析仪(RTA)利用直流和交流伏安技术,是一种现场在线监测系统,可提供不同电化学沉积溶液的完整化学分析。当从多变量数据集预测浓度参数时,RTA采用多变量校准。尽管基于层次和多块主成分回归(PCR-)和偏最小二乘(PLS-)的方法即使在变量数量明显超过样本数量的情况下也可以处理数据集,但减少变量数量有助于改善模型预测和更好地解释。本演讲重点介绍了基于数据选择的多步骤,严格的最小二乘回归方法,类类比建模能力的简单建模,以及作为电分析中的新应用,通过PLS和PCR消除无信息变量,投影中的变量重要性与PLS,区间PLS,区间PCR和移动窗口PLS相结合。还演示了特定数据的最佳分解技术的选择标准。本文的主要目的是向电分析化学家介绍许多在光谱学中已经建立并能成功应用于伏安数据分析的变量选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Monitoring of Copper Damascene Electroplating Bath by Voltammetry: Selection of Variables for Multiblock and Hierarchical Chemometric Analysis of Voltammetric Data
The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信