{"title":"石英谐振器的激励模态和死模态分析","authors":"Zi-Gui Huang, Zheng-Yu Chen","doi":"10.1155/2014/746847","DOIUrl":null,"url":null,"abstract":"This study uses the finite element method (FEM) to analyze the excitation and dead vibration modes of two-dimensional quartz plates. We first simplify three-dimensional quartz plates with plane strain simplification and then compare the modes of the simplified three-dimensional plates to those of two-dimensional plates. We then analyze quartz vibrating elements of AT-cut plates and SC-cut plates. To understand the regularity of the resonance frequency of plates that are excitable by voltage loading, we compare the natural vibrations of quartz plates with the excitation frequency generated after the plates are excited by voltage loading.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2014 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/746847","citationCount":"0","resultStr":"{\"title\":\"Analysis of Excitation and Dead Vibration Modes of Quartz Resonators\",\"authors\":\"Zi-Gui Huang, Zheng-Yu Chen\",\"doi\":\"10.1155/2014/746847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses the finite element method (FEM) to analyze the excitation and dead vibration modes of two-dimensional quartz plates. We first simplify three-dimensional quartz plates with plane strain simplification and then compare the modes of the simplified three-dimensional plates to those of two-dimensional plates. We then analyze quartz vibrating elements of AT-cut plates and SC-cut plates. To understand the regularity of the resonance frequency of plates that are excitable by voltage loading, we compare the natural vibrations of quartz plates with the excitation frequency generated after the plates are excited by voltage loading.\",\"PeriodicalId\":44068,\"journal\":{\"name\":\"Advances in Acoustics and Vibration\",\"volume\":\"2014 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/746847\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/746847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/746847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analysis of Excitation and Dead Vibration Modes of Quartz Resonators
This study uses the finite element method (FEM) to analyze the excitation and dead vibration modes of two-dimensional quartz plates. We first simplify three-dimensional quartz plates with plane strain simplification and then compare the modes of the simplified three-dimensional plates to those of two-dimensional plates. We then analyze quartz vibrating elements of AT-cut plates and SC-cut plates. To understand the regularity of the resonance frequency of plates that are excitable by voltage loading, we compare the natural vibrations of quartz plates with the excitation frequency generated after the plates are excited by voltage loading.
期刊介绍:
The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.