嗜盐古菌翻译起始因子5A修饰途径的解读

IF 2.3 4区 生物学 Q3 MICROBIOLOGY
Laurence Prunetti, M. Graf, Ian K. Blaby, Lauri Peil, A. Makkay, A. Starosta, R. Papke, T. Oshima, Daniel N. Wilson, V. de Crécy-Lagard
{"title":"嗜盐古菌翻译起始因子5A修饰途径的解读","authors":"Laurence Prunetti, M. Graf, Ian K. Blaby, Lauri Peil, A. Makkay, A. Starosta, R. Papke, T. Oshima, Daniel N. Wilson, V. de Crécy-Lagard","doi":"10.1155/2016/7316725","DOIUrl":null,"url":null,"abstract":"Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2016 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7316725","citationCount":"20","resultStr":"{\"title\":\"Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea\",\"authors\":\"Laurence Prunetti, M. Graf, Ian K. Blaby, Lauri Peil, A. Makkay, A. Starosta, R. Papke, T. Oshima, Daniel N. Wilson, V. de Crécy-Lagard\",\"doi\":\"10.1155/2016/7316725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.\",\"PeriodicalId\":49105,\"journal\":{\"name\":\"Archaea-An International Microbiological Journal\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2016-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/7316725\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaea-An International Microbiological Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/7316725\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2016/7316725","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 20

摘要

翻译起始因子5A (IF5A)在真核生物(eIF5A)和古细菌(aIF5A)中具有高度保守性。IF5A的活性需要hypusine,一种在真核生物中由多胺前体亚精胺合成的翻译后修饰。细胞内多胺分析显示,在最小的培养基中,火山盐铁菌产生的多胺主要是胍丁胺和尸胺,这就提出了在这种嗜盐古菌中如何合成羟丁胺的问题。代谢重建初步揭示了Hfx中多胺代谢和aIF5A修饰的情况。经过实验测试的火山。Hfx的aIF5A分析。通过LC-MS/MS分析,发现其完全被脱氧hypusinylation。遗传研究证实了预测的精氨酸脱羧酶基因(HVO_1958)在精氨酸合成中的作用。agmatinase样基因(HVO_2299)被发现是必不可少的,这与物理聚类证据预测的aIF5A修饰的作用一致。来自酿酒酵母的重组脱氧hypusine合成酶(DHS)可以将亚精胺中的4-氨基丁基片段转移到Hfx的aIF5A上。离体火山菌。然而,至少在测试条件下,Hfx没有观察到这种转移。volcanii国土安全部。此外,外汇的增长。经典DHS抑制剂GC7对volcanii没有抑制作用。我们提出了一个Hfx中脱氧碱基的合成模型。不同于典型的真核生物途径,为进一步的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信