{"title":"应用于Schrödinger-Benjamin-Ono系统的隐式谱格式误差分析","authors":"Juan Carlos Muñoz Grajales","doi":"10.1155/2016/6930758","DOIUrl":null,"url":null,"abstract":"We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrodinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"77 1","pages":"1-12"},"PeriodicalIF":1.5000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/6930758","citationCount":"1","resultStr":"{\"title\":\"Error Analysis of an Implicit Spectral Scheme Applied to the Schrödinger-Benjamin-Ono System\",\"authors\":\"Juan Carlos Muñoz Grajales\",\"doi\":\"10.1155/2016/6930758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrodinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"77 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/6930758\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6930758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6930758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Error Analysis of an Implicit Spectral Scheme Applied to the Schrödinger-Benjamin-Ono System
We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a coupled nonlinear Schrodinger-Benjamin-Ono system that describes the motion of two fluids with different densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact travelling wave solutions of the system.