C. Iribarren, Meng Lu, E. Jorgenson, Manuel Martínez, C. Lluís-Ganella, I. Subirana, E. Salas, R. Elosúa
{"title":"多标记遗传风险评分用于预测冠心病事件的临床应用:一项超过51000名欧洲血统个体的队列研究","authors":"C. Iribarren, Meng Lu, E. Jorgenson, Manuel Martínez, C. Lluís-Ganella, I. Subirana, E. Salas, R. Elosúa","doi":"10.1161/CIRCGENETICS.116.001522","DOIUrl":null,"url":null,"abstract":"Background—We evaluated whether including multilocus genetic risk scores (GRSs) into the Framingham Risk Equation improves the predictive capacity, discrimination, and reclassification of asymptomatic individuals with respect to coronary heart disease (CHD) risk. Methods and Results—We performed a cohort study among 51 954 European-ancestry members of a Northern California integrated healthcare system (67% female; mean age 59) free of CHD at baseline (2007–2008). Four GRSs were constructed using between 8 and 51 previously identified genetic variants. After a mean (±SD) follow-up of 5.9 (±1.5) years, 1864 incident CHD events were documented. All GRSs were linearly associated with CHD in a model adjusted by individual risk factors: hazard ratio (95% confidence interval) per SD unit: 1.21 (1.15–1.26) for GRS_8, 1.20 (1.15–1.26) for GRS_12, 1.23 (1.17–1.28) for GRS_36, and 1.23 (1.17–1.28) for GRS_51. Inclusion of the GRSs improved the C statistic (&Dgr;C statistic =0.008 for GRS_8 and GRS_36; 0.007 for GRS_12; and 0.009 for GRS_51; all P<0.001). The net reclassification improvement was 5% for GRS_8, GRS_12, and GRS_36 and 4% for GRS_51 in the entire cohort and was (after correcting for bias) 9% for GRS_8 and GRS_12 and 7% for GRS_36 and GRS_51 when analyzing those classified as intermediate Framingham risk (10%–20%). The number required to treat to prevent 1 CHD after selectively treating with statins up-reclassified subjects on the basis of genetic information was 36 for GRS_8 and GRS_12, 41 for GRS_36, and 43 for GRS_51. Conclusions—Our results demonstrate significant and clinically relevant incremental discriminative/predictive capability of 4 multilocus GRSs for incident CHD among subjects of European ancestry.","PeriodicalId":48940,"journal":{"name":"Circulation-Cardiovascular Genetics","volume":"9 1","pages":"531–540"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001522","citationCount":"48","resultStr":"{\"title\":\"Clinical Utility of Multimarker Genetic Risk Scores for Prediction of Incident Coronary Heart Disease: A Cohort Study Among Over 51 000 Individuals of European Ancestry\",\"authors\":\"C. Iribarren, Meng Lu, E. Jorgenson, Manuel Martínez, C. Lluís-Ganella, I. Subirana, E. Salas, R. Elosúa\",\"doi\":\"10.1161/CIRCGENETICS.116.001522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background—We evaluated whether including multilocus genetic risk scores (GRSs) into the Framingham Risk Equation improves the predictive capacity, discrimination, and reclassification of asymptomatic individuals with respect to coronary heart disease (CHD) risk. Methods and Results—We performed a cohort study among 51 954 European-ancestry members of a Northern California integrated healthcare system (67% female; mean age 59) free of CHD at baseline (2007–2008). Four GRSs were constructed using between 8 and 51 previously identified genetic variants. After a mean (±SD) follow-up of 5.9 (±1.5) years, 1864 incident CHD events were documented. All GRSs were linearly associated with CHD in a model adjusted by individual risk factors: hazard ratio (95% confidence interval) per SD unit: 1.21 (1.15–1.26) for GRS_8, 1.20 (1.15–1.26) for GRS_12, 1.23 (1.17–1.28) for GRS_36, and 1.23 (1.17–1.28) for GRS_51. Inclusion of the GRSs improved the C statistic (&Dgr;C statistic =0.008 for GRS_8 and GRS_36; 0.007 for GRS_12; and 0.009 for GRS_51; all P<0.001). The net reclassification improvement was 5% for GRS_8, GRS_12, and GRS_36 and 4% for GRS_51 in the entire cohort and was (after correcting for bias) 9% for GRS_8 and GRS_12 and 7% for GRS_36 and GRS_51 when analyzing those classified as intermediate Framingham risk (10%–20%). The number required to treat to prevent 1 CHD after selectively treating with statins up-reclassified subjects on the basis of genetic information was 36 for GRS_8 and GRS_12, 41 for GRS_36, and 43 for GRS_51. Conclusions—Our results demonstrate significant and clinically relevant incremental discriminative/predictive capability of 4 multilocus GRSs for incident CHD among subjects of European ancestry.\",\"PeriodicalId\":48940,\"journal\":{\"name\":\"Circulation-Cardiovascular Genetics\",\"volume\":\"9 1\",\"pages\":\"531–540\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.116.001522\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation-Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.116.001522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation-Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.116.001522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Clinical Utility of Multimarker Genetic Risk Scores for Prediction of Incident Coronary Heart Disease: A Cohort Study Among Over 51 000 Individuals of European Ancestry
Background—We evaluated whether including multilocus genetic risk scores (GRSs) into the Framingham Risk Equation improves the predictive capacity, discrimination, and reclassification of asymptomatic individuals with respect to coronary heart disease (CHD) risk. Methods and Results—We performed a cohort study among 51 954 European-ancestry members of a Northern California integrated healthcare system (67% female; mean age 59) free of CHD at baseline (2007–2008). Four GRSs were constructed using between 8 and 51 previously identified genetic variants. After a mean (±SD) follow-up of 5.9 (±1.5) years, 1864 incident CHD events were documented. All GRSs were linearly associated with CHD in a model adjusted by individual risk factors: hazard ratio (95% confidence interval) per SD unit: 1.21 (1.15–1.26) for GRS_8, 1.20 (1.15–1.26) for GRS_12, 1.23 (1.17–1.28) for GRS_36, and 1.23 (1.17–1.28) for GRS_51. Inclusion of the GRSs improved the C statistic (&Dgr;C statistic =0.008 for GRS_8 and GRS_36; 0.007 for GRS_12; and 0.009 for GRS_51; all P<0.001). The net reclassification improvement was 5% for GRS_8, GRS_12, and GRS_36 and 4% for GRS_51 in the entire cohort and was (after correcting for bias) 9% for GRS_8 and GRS_12 and 7% for GRS_36 and GRS_51 when analyzing those classified as intermediate Framingham risk (10%–20%). The number required to treat to prevent 1 CHD after selectively treating with statins up-reclassified subjects on the basis of genetic information was 36 for GRS_8 and GRS_12, 41 for GRS_36, and 43 for GRS_51. Conclusions—Our results demonstrate significant and clinically relevant incremental discriminative/predictive capability of 4 multilocus GRSs for incident CHD among subjects of European ancestry.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease. Manuscripts are examined by the editorial staff and usually evaluated by expert reviewers assigned by the editors. Both clinical and basic articles will also be subject to statistical review, when appropriate. Provisional or final acceptance is based on originality, scientific content, and topical balance of the journal. Decisions are communicated by email, generally within six weeks. The editors will not discuss a decision about a manuscript over the phone. All rebuttals must be submitted in writing to the editorial office.