基因检测在肥厚性心肌病临床前疾病检测中的应用

Q Medicine
J. Ingles, C. Burns, A. Barratt, C. Semsarian
{"title":"基因检测在肥厚性心肌病临床前疾病检测中的应用","authors":"J. Ingles, C. Burns, A. Barratt, C. Semsarian","doi":"10.1161/CIRCGENETICS.115.001093","DOIUrl":null,"url":null,"abstract":"Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular diseases, with a prevalence of at least 1 in 500 in the general population.1,2 HCM is characterized by left ventricular hypertrophy, in the absence of other loading conditions, such as hypertension.3 The hallmark feature of HCM is significant clinical heterogeneity in presentation, ranging from asymptomatic patients to those who have the most serious outcomes of heart failure and sudden cardiac death.\n\nOver 1500 mutations in at least 15 sarcomere-encoding genes have been identified.4–7 The significance of cardiac genetic testing in clinical practice is 2-fold. For the proband, identification of the underlying genetic cause in some cases can clarify the cause of hypertrophy, for example, clarifying phenocopies, such as PRKAG2-glycogen storage disease and Fabry disease. The greatest utility, however, is in cascade genetic testing of asymptomatic relatives, with clear benefits either for confirming a borderline clinical diagnosis, or suspicious clinical changes suggestive of early disease, or most importantly ruling out the disease in those who test gene-negative. Identification of a silent gene carrier will guide cascade testing of additional family members, in effect clarifying their risk status. Of most benefit, a negative genetic result can reassure offspring that they are not at risk of HCM.\n\nThe escalation in our understanding of the genetic basis of HCM has been catalyzed by the implementation of next generation sequencing technologies. In response to faster and more affordable testing, commercial genetic testing for HCM now often comprises vast cardiac gene chips (ie, 50–200 or more genes). This approach, although comprehensive, also draws into sharp focus the limitations of our current knowledge. The challenges of cardiac genetic testing are increasingly documented, such as identification of variants of uncertain significance (VUS), incidental genetic findings,8 reclassification of variants,9 increased need …","PeriodicalId":48940,"journal":{"name":"Circulation-Cardiovascular Genetics","volume":"8 1","pages":"852–859"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.115.001093","citationCount":"59","resultStr":"{\"title\":\"Application of Genetic Testing in Hypertrophic Cardiomyopathy for Preclinical Disease Detection\",\"authors\":\"J. Ingles, C. Burns, A. Barratt, C. Semsarian\",\"doi\":\"10.1161/CIRCGENETICS.115.001093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular diseases, with a prevalence of at least 1 in 500 in the general population.1,2 HCM is characterized by left ventricular hypertrophy, in the absence of other loading conditions, such as hypertension.3 The hallmark feature of HCM is significant clinical heterogeneity in presentation, ranging from asymptomatic patients to those who have the most serious outcomes of heart failure and sudden cardiac death.\\n\\nOver 1500 mutations in at least 15 sarcomere-encoding genes have been identified.4–7 The significance of cardiac genetic testing in clinical practice is 2-fold. For the proband, identification of the underlying genetic cause in some cases can clarify the cause of hypertrophy, for example, clarifying phenocopies, such as PRKAG2-glycogen storage disease and Fabry disease. The greatest utility, however, is in cascade genetic testing of asymptomatic relatives, with clear benefits either for confirming a borderline clinical diagnosis, or suspicious clinical changes suggestive of early disease, or most importantly ruling out the disease in those who test gene-negative. Identification of a silent gene carrier will guide cascade testing of additional family members, in effect clarifying their risk status. Of most benefit, a negative genetic result can reassure offspring that they are not at risk of HCM.\\n\\nThe escalation in our understanding of the genetic basis of HCM has been catalyzed by the implementation of next generation sequencing technologies. In response to faster and more affordable testing, commercial genetic testing for HCM now often comprises vast cardiac gene chips (ie, 50–200 or more genes). This approach, although comprehensive, also draws into sharp focus the limitations of our current knowledge. The challenges of cardiac genetic testing are increasingly documented, such as identification of variants of uncertain significance (VUS), incidental genetic findings,8 reclassification of variants,9 increased need …\",\"PeriodicalId\":48940,\"journal\":{\"name\":\"Circulation-Cardiovascular Genetics\",\"volume\":\"8 1\",\"pages\":\"852–859\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.115.001093\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation-Cardiovascular Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCGENETICS.115.001093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation-Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.115.001093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 59

摘要

肥厚性心肌病(HCM)是最常见的遗传性心血管疾病,在普通人群中患病率至少为1 / 500。1,2 HCM的特征是在没有其他负荷条件(如高血压)的情况下,左心室肥厚HCM的标志性特征是临床表现的显著异质性,从无症状患者到有心力衰竭和心源性猝死等最严重后果的患者。在至少15种肌瘤编码基因中发现了超过1500个突变。心脏基因检测在临床实践中的意义是2倍的。对于先证者,在某些情况下,鉴定潜在的遗传原因可以澄清肥厚的原因,例如,澄清表型,如prkag2 -糖原储存病和Fabry病。然而,最大的用途是对无症状亲属进行级联基因检测,这对于确认边缘性临床诊断或提示早期疾病的可疑临床变化有明显的好处,或者最重要的是在基因检测为阴性的人中排除疾病。沉默基因携带者的识别将指导其他家庭成员的级联检测,有效地澄清他们的风险状况。最大的好处是,阴性的遗传结果可以让后代放心,他们没有患HCM的风险。下一代测序技术的实施促进了我们对HCM遗传基础的理解的升级。为了应对更快、更实惠的检测,HCM的商业基因检测现在通常包含巨大的心脏基因芯片(即50-200个或更多基因)。这种方法虽然全面,但也突出了我们目前知识的局限性。心脏基因检测的挑战越来越多地被记录下来,例如鉴定不确定意义的变异(VUS),偶然的遗传发现,8种变异的重新分类,9种增加的需求…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Genetic Testing in Hypertrophic Cardiomyopathy for Preclinical Disease Detection
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular diseases, with a prevalence of at least 1 in 500 in the general population.1,2 HCM is characterized by left ventricular hypertrophy, in the absence of other loading conditions, such as hypertension.3 The hallmark feature of HCM is significant clinical heterogeneity in presentation, ranging from asymptomatic patients to those who have the most serious outcomes of heart failure and sudden cardiac death. Over 1500 mutations in at least 15 sarcomere-encoding genes have been identified.4–7 The significance of cardiac genetic testing in clinical practice is 2-fold. For the proband, identification of the underlying genetic cause in some cases can clarify the cause of hypertrophy, for example, clarifying phenocopies, such as PRKAG2-glycogen storage disease and Fabry disease. The greatest utility, however, is in cascade genetic testing of asymptomatic relatives, with clear benefits either for confirming a borderline clinical diagnosis, or suspicious clinical changes suggestive of early disease, or most importantly ruling out the disease in those who test gene-negative. Identification of a silent gene carrier will guide cascade testing of additional family members, in effect clarifying their risk status. Of most benefit, a negative genetic result can reassure offspring that they are not at risk of HCM. The escalation in our understanding of the genetic basis of HCM has been catalyzed by the implementation of next generation sequencing technologies. In response to faster and more affordable testing, commercial genetic testing for HCM now often comprises vast cardiac gene chips (ie, 50–200 or more genes). This approach, although comprehensive, also draws into sharp focus the limitations of our current knowledge. The challenges of cardiac genetic testing are increasingly documented, such as identification of variants of uncertain significance (VUS), incidental genetic findings,8 reclassification of variants,9 increased need …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation-Cardiovascular Genetics
Circulation-Cardiovascular Genetics CARDIAC & CARDIOVASCULAR SYSTEMS-GENETICS & HEREDITY
CiteScore
3.95
自引率
0.00%
发文量
0
期刊介绍: Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease. Manuscripts are examined by the editorial staff and usually evaluated by expert reviewers assigned by the editors. Both clinical and basic articles will also be subject to statistical review, when appropriate. Provisional or final acceptance is based on originality, scientific content, and topical balance of the journal. Decisions are communicated by email, generally within six weeks. The editors will not discuss a decision about a manuscript over the phone. All rebuttals must be submitted in writing to the editorial office.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信