分数阶非局部条件耦合混合微分方程组解的存在性

IF 1.5 Q2 MATHEMATICS, APPLIED
K. Hilal, A. Kajouni
{"title":"分数阶非局部条件耦合混合微分方程组解的存在性","authors":"K. Hilal, A. Kajouni","doi":"10.1155/2016/4726526","DOIUrl":null,"url":null,"abstract":"This paper is motivated by some papers treating the fractional hybrid differential equations with nonlocal conditions and the system of coupled hybrid fractional differential equations; an existence theorem for fractional hybrid differential equations involving Caputo differential operators of order is proved under mixed Lipschitz and Caratheodory conditions. The existence and uniqueness result is elaborated for the system of coupled hybrid fractional differential equations.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2016 1","pages":"1-9"},"PeriodicalIF":1.5000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/4726526","citationCount":"3","resultStr":"{\"title\":\"Existence of the Solution for System of Coupled Hybrid Differential Equations with Fractional Order and Nonlocal Conditions\",\"authors\":\"K. Hilal, A. Kajouni\",\"doi\":\"10.1155/2016/4726526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is motivated by some papers treating the fractional hybrid differential equations with nonlocal conditions and the system of coupled hybrid fractional differential equations; an existence theorem for fractional hybrid differential equations involving Caputo differential operators of order is proved under mixed Lipschitz and Caratheodory conditions. The existence and uniqueness result is elaborated for the system of coupled hybrid fractional differential equations.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\"2016 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/4726526\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/4726526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/4726526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

本文的灵感来自于一些研究非局部条件下分数阶混合微分方程和耦合分数阶混合微分方程系统的论文;在混合Lipschitz和Caratheodory条件下,证明了含有阶Caputo微分算子的分数阶混合微分方程的存在性定理。阐述了一类耦合混合分数阶微分方程系统的存在唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of the Solution for System of Coupled Hybrid Differential Equations with Fractional Order and Nonlocal Conditions
This paper is motivated by some papers treating the fractional hybrid differential equations with nonlocal conditions and the system of coupled hybrid fractional differential equations; an existence theorem for fractional hybrid differential equations involving Caputo differential operators of order is proved under mixed Lipschitz and Caratheodory conditions. The existence and uniqueness result is elaborated for the system of coupled hybrid fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信