{"title":"插入微孔板的双叶隔板声传输损失的正常发生率","authors":"A. Putra, A. Y. Ismail, R. Ramlan, R. Ayob","doi":"10.1155/2013/216493","DOIUrl":null,"url":null,"abstract":"A double-leaf partition in engineering structures has been widely applied for its advantages i.e. in terms of its mechanical strength as well as its lightweight property. In noise control, the double-leaf also serves to be an effective noise barrier. Unfortunately at low frequency, the sound transmission loss reduces significantly due to the coupling between the panels and the air between them. This paper studies the effect of a micro-perforated panel (MPP) inserted inside a double-leaf partition on the sound transmission loss performance of the system. The MPP insertion is proposed to provide a hygienic double-leaf noise insulator replacing the classical abrasive porous materials between the panels. It is found that the transmission loss improves at the troublesome mass-air-mass resonant frequency if the MPP is located closer to the solid panel. The mathematical model is derived for normal incidence of acoustic loading.","PeriodicalId":44068,"journal":{"name":"Advances in Acoustics and Vibration","volume":"2013 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/216493","citationCount":"18","resultStr":"{\"title\":\"Normal Incidence of Sound Transmission Loss of a Double-Leaf Partition Inserted with a Microperforated Panel\",\"authors\":\"A. Putra, A. Y. Ismail, R. Ramlan, R. Ayob\",\"doi\":\"10.1155/2013/216493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A double-leaf partition in engineering structures has been widely applied for its advantages i.e. in terms of its mechanical strength as well as its lightweight property. In noise control, the double-leaf also serves to be an effective noise barrier. Unfortunately at low frequency, the sound transmission loss reduces significantly due to the coupling between the panels and the air between them. This paper studies the effect of a micro-perforated panel (MPP) inserted inside a double-leaf partition on the sound transmission loss performance of the system. The MPP insertion is proposed to provide a hygienic double-leaf noise insulator replacing the classical abrasive porous materials between the panels. It is found that the transmission loss improves at the troublesome mass-air-mass resonant frequency if the MPP is located closer to the solid panel. The mathematical model is derived for normal incidence of acoustic loading.\",\"PeriodicalId\":44068,\"journal\":{\"name\":\"Advances in Acoustics and Vibration\",\"volume\":\"2013 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2013/216493\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Acoustics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/216493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Acoustics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/216493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Normal Incidence of Sound Transmission Loss of a Double-Leaf Partition Inserted with a Microperforated Panel
A double-leaf partition in engineering structures has been widely applied for its advantages i.e. in terms of its mechanical strength as well as its lightweight property. In noise control, the double-leaf also serves to be an effective noise barrier. Unfortunately at low frequency, the sound transmission loss reduces significantly due to the coupling between the panels and the air between them. This paper studies the effect of a micro-perforated panel (MPP) inserted inside a double-leaf partition on the sound transmission loss performance of the system. The MPP insertion is proposed to provide a hygienic double-leaf noise insulator replacing the classical abrasive porous materials between the panels. It is found that the transmission loss improves at the troublesome mass-air-mass resonant frequency if the MPP is located closer to the solid panel. The mathematical model is derived for normal incidence of acoustic loading.
期刊介绍:
The aim of Advances in Acoustics and Vibration is to act as a platform for dissemination of innovative and original research and development work in the area of acoustics and vibration. The target audience of the journal comprises both researchers and practitioners. Articles with innovative works of theoretical and/or experimental nature with research and/or application focus can be considered for publication in the journal. Articles submitted for publication in Advances in Acoustics and Vibration must neither have been published previously nor be under consideration elsewhere. Subject areas include (but are not limited to): Active, semi-active, passive and combined active-passive noise and vibration control Acoustic signal processing Aero-acoustics and aviation noise Architectural acoustics Audio acoustics, mechanisms of human hearing, musical acoustics Community and environmental acoustics and vibration Computational acoustics, numerical techniques Condition monitoring, health diagnostics, vibration testing, non-destructive testing Human response to sound and vibration, Occupational noise exposure and control Industrial, machinery, transportation noise and vibration Low, mid, and high frequency noise and vibration Materials for noise and vibration control Measurement and actuation techniques, sensors, actuators Modal analysis, statistical energy analysis, wavelet analysis, inverse methods Non-linear acoustics and vibration Sound and vibration sources, source localisation, sound propagation Underwater and ship acoustics Vibro-acoustics and shock.