H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa
{"title":"热塑性共聚酯弹性体复合材料的动态力学分析及三体磨粒磨损行为","authors":"H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa","doi":"10.1155/2014/210187","DOIUrl":null,"url":null,"abstract":"Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2014-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/210187","citationCount":"30","resultStr":"{\"title\":\"Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites\",\"authors\":\"H. Rajashekaraiah, Sekar Mohan, P. K. Pallathadka, Suresha Bhimappa\",\"doi\":\"10.1155/2014/210187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber\",\"PeriodicalId\":44668,\"journal\":{\"name\":\"Advances in Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2014/210187\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/210187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/210187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites
Various amounts of short fibers (glass and carbon) and particulate fillers like polytetrafluoroethylene (PTFE), silicon carbide (SiC), and alumina (Al2O3) were systematically introduced into the thermoplastic copolyester elastomer (TCE) matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA) and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region), the storage modulus increases with increase in wt.% of reinforcement (fiber