Y. Agawa, M. Kunimatsu, T. Ito, Yasutaka Kuwahara, H. Yamashita
{"title":"同轴电弧等离子沉积法制备聚合物电解质膜燃料电池用Pt/C催化剂","authors":"Y. Agawa, M. Kunimatsu, T. Ito, Yasutaka Kuwahara, H. Yamashita","doi":"10.1149/2.0091510EEL","DOIUrl":null,"url":null,"abstract":"A coaxial arc plasma deposition (CAPD) source was developed to generate metallic nanoparticles (NPs) with sizes from sub-nanometer to several nanometers. Pt NPs were deposited on a carbon support by CAPD for use as a polymer electrolyte membrane fuel cell (PEMFC) electrode catalyst. The principle of catalyst formation and the mechanism for control of the particle size by CAPD were investigated. Transmission electron microscopy observations were performed for Pt/C catalysts with various Pt contents. Single PEMFCs were fabricated using 1, 5, and 10 wt% Pt/C catalysts, of which the best cell performance was obtained with the 10 wt% Pt/C catalyst.","PeriodicalId":11470,"journal":{"name":"ECS Electrochemistry Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1149/2.0091510EEL","citationCount":"8","resultStr":"{\"title\":\"Preparation of Pt/C Catalyst by Coaxial Arc Plasma Deposition for Polymer Electrolyte Membrane Fuel Cells\",\"authors\":\"Y. Agawa, M. Kunimatsu, T. Ito, Yasutaka Kuwahara, H. Yamashita\",\"doi\":\"10.1149/2.0091510EEL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A coaxial arc plasma deposition (CAPD) source was developed to generate metallic nanoparticles (NPs) with sizes from sub-nanometer to several nanometers. Pt NPs were deposited on a carbon support by CAPD for use as a polymer electrolyte membrane fuel cell (PEMFC) electrode catalyst. The principle of catalyst formation and the mechanism for control of the particle size by CAPD were investigated. Transmission electron microscopy observations were performed for Pt/C catalysts with various Pt contents. Single PEMFCs were fabricated using 1, 5, and 10 wt% Pt/C catalysts, of which the best cell performance was obtained with the 10 wt% Pt/C catalyst.\",\"PeriodicalId\":11470,\"journal\":{\"name\":\"ECS Electrochemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1149/2.0091510EEL\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Electrochemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0091510EEL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Electrochemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0091510EEL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Pt/C Catalyst by Coaxial Arc Plasma Deposition for Polymer Electrolyte Membrane Fuel Cells
A coaxial arc plasma deposition (CAPD) source was developed to generate metallic nanoparticles (NPs) with sizes from sub-nanometer to several nanometers. Pt NPs were deposited on a carbon support by CAPD for use as a polymer electrolyte membrane fuel cell (PEMFC) electrode catalyst. The principle of catalyst formation and the mechanism for control of the particle size by CAPD were investigated. Transmission electron microscopy observations were performed for Pt/C catalysts with various Pt contents. Single PEMFCs were fabricated using 1, 5, and 10 wt% Pt/C catalysts, of which the best cell performance was obtained with the 10 wt% Pt/C catalyst.