利用单层复盖层对接地介质板的场增强

Q3 Engineering
C. Valagiannopoulos, N. Tsitsas
{"title":"利用单层复盖层对接地介质板的场增强","authors":"C. Valagiannopoulos, N. Tsitsas","doi":"10.1155/2012/439147","DOIUrl":null,"url":null,"abstract":"The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ) or low-index metamaterial.","PeriodicalId":7352,"journal":{"name":"Advances in Optoelectronics","volume":"2012 1","pages":"439147"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/439147","citationCount":"9","resultStr":"{\"title\":\"Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer\",\"authors\":\"C. Valagiannopoulos, N. Tsitsas\",\"doi\":\"10.1155/2012/439147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ) or low-index metamaterial.\",\"PeriodicalId\":7352,\"journal\":{\"name\":\"Advances in Optoelectronics\",\"volume\":\"2012 1\",\"pages\":\"439147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/439147\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/439147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/439147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

摘要

在平板结构上添加介电层经常用于各种电磁器件,以使它们具有某些所需的操作特性。在这项工作中,我们考虑了一个接地的介电膜板,它是由一个正入射高斯光束的外部激励。在薄膜板的顶部,我们使用了一个额外的适当选择的单一各向同性的上覆层,以增加板内的场浓度,从而实现从外部源到内部区域的最佳功率传输。我们定义了一个感兴趣的量,称为“增强因子”,表示当上覆层存在时,与没有上覆层的情况相比,膜板中的场浓度增加。结果表明,适当选择介电常数、磁导率和衬底厚度可以获得较大的增强系数值。特别是,当膜板由ϵ-near-zero (ENZ)或低折射率超材料组成时,膜板中的场显著增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer
The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ) or low-index metamaterial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Optoelectronics
Advances in Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Advances in OptoElectronics is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信