{"title":"均匀多粒子系统相互作用规律稀疏学习的数值研究","authors":"Ritwik Trehan","doi":"10.1137/22s1469341","DOIUrl":null,"url":null,"abstract":". Multi-agent systems have found wide applications in science and engineering ranging from opinion dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the interaction laws between individual agents leading to collective behaviors. In this article, we consider a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-rithms and propose a new approach to learning the interaction laws from a small amount of data. Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a small, noisy data regime and show the superiority of the proposed approach.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Study on Sparse Learning of Interaction Laws in Homogeneous Multiparticle Systems\",\"authors\":\"Ritwik Trehan\",\"doi\":\"10.1137/22s1469341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Multi-agent systems have found wide applications in science and engineering ranging from opinion dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the interaction laws between individual agents leading to collective behaviors. In this article, we consider a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-rithms and propose a new approach to learning the interaction laws from a small amount of data. Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a small, noisy data regime and show the superiority of the proposed approach.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22s1469341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1469341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Numerical Study on Sparse Learning of Interaction Laws in Homogeneous Multiparticle Systems
. Multi-agent systems have found wide applications in science and engineering ranging from opinion dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the interaction laws between individual agents leading to collective behaviors. In this article, we consider a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-rithms and propose a new approach to learning the interaction laws from a small amount of data. Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a small, noisy data regime and show the superiority of the proposed approach.