轴心规则和单调路径的多面体几何

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Alexander E. Black, J. D. De Loera, Niklas Lütjeharms, Raman Sanyal
{"title":"轴心规则和单调路径的多面体几何","authors":"Alexander E. Black, J. D. De Loera, Niklas Lütjeharms, Raman Sanyal","doi":"10.1137/22m1475910","DOIUrl":null,"url":null,"abstract":"Motivated by the analysis of the performance of the simplex method we study the behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot rules which are fundamental for the following reasons: First, they are memory-less, in the sense that the pivots are governed by local information encoded by an arborescence. Second, many of the most used pivot rules belong to that class, and we show this subclass is critical for understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be parametrized in a natural continuous manner. We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We explain their face structure in terms of multi-arborescences. We compute upper bounds on the number of coherent arborescences, that is, vertices of our polytopes. Beyond optimization, our constructions provide new perspectives on classical geometric combinatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neighbotopes refine monotone path polytopes of Billera--Sturmfels. Moreover special cases of our polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement pivot rules we draw connections to sweep polytopes and polymatroids.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Polyhedral Geometry of Pivot Rules and Monotone Paths\",\"authors\":\"Alexander E. Black, J. D. De Loera, Niklas Lütjeharms, Raman Sanyal\",\"doi\":\"10.1137/22m1475910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the analysis of the performance of the simplex method we study the behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot rules which are fundamental for the following reasons: First, they are memory-less, in the sense that the pivots are governed by local information encoded by an arborescence. Second, many of the most used pivot rules belong to that class, and we show this subclass is critical for understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be parametrized in a natural continuous manner. We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We explain their face structure in terms of multi-arborescences. We compute upper bounds on the number of coherent arborescences, that is, vertices of our polytopes. Beyond optimization, our constructions provide new perspectives on classical geometric combinatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neighbotopes refine monotone path polytopes of Billera--Sturmfels. Moreover special cases of our polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement pivot rules we draw connections to sweep polytopes and polymatroids.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1475910\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1475910","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

在分析单纯形方法性能的基础上,研究了线性规划的支点规则族的性质。我们引入归一化权重枢轴规则,这些规则是基本的,原因如下:首先,它们是无内存的,从某种意义上说,枢轴由由树形编码的局部信息控制。其次,许多最常用的枢轴规则都属于这个类,我们将说明这个子类对于理解所有枢轴规则的复杂性至关重要。最后,归一化权重枢轴规则可以以自然连续的方式参数化。我们证明了两个多面体的存在性,即支点规则多面体和邻体,它们捕捉了归一化权支点规则在多面体和线性规划上的行为。我们用多树形来解释它们的面部结构。我们计算连贯树形的数目的上界,即多面体的顶点。除了优化,我们的结构为经典几何组合提供了新的视角。我们引入了一个归一化权重枢轴规则,我们称之为最大斜率枢轴规则,它是对阴影-顶点枢轴规则的推广。相应的枢轴规则多面体和邻接多面体细化了Billera—Sturmfels的单调路径多面体。此外,我们的多面体在特殊情况下会产生置换面体、缔合面体和多面体。为了最大程度地改进支点规则,我们绘制连接来扫描多面体和多拟体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Polyhedral Geometry of Pivot Rules and Monotone Paths
Motivated by the analysis of the performance of the simplex method we study the behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot rules which are fundamental for the following reasons: First, they are memory-less, in the sense that the pivots are governed by local information encoded by an arborescence. Second, many of the most used pivot rules belong to that class, and we show this subclass is critical for understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be parametrized in a natural continuous manner. We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We explain their face structure in terms of multi-arborescences. We compute upper bounds on the number of coherent arborescences, that is, vertices of our polytopes. Beyond optimization, our constructions provide new perspectives on classical geometric combinatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neighbotopes refine monotone path polytopes of Billera--Sturmfels. Moreover special cases of our polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement pivot rules we draw connections to sweep polytopes and polymatroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信