轮辐图上的对称随机漫步

Collin Tully
{"title":"轮辐图上的对称随机漫步","authors":"Collin Tully","doi":"10.1137/21s1423531","DOIUrl":null,"url":null,"abstract":"We study symmetric random walks on the vertices of a wheel-and-spokes graph. We consider the following questions. How long does it take for the walk to go from one vertex to another? Starting from one vertex, how long does it take to visit all vertices? Having visited all vertices, how much additional time does it take to return to the starting vertex? The answers to these questions are random variables for which we desire the exact probability distributions, if possible; otherwise, we seek at least their means and standard deviations. We compare our results to those of symmetric random walks on the vertices of polygons.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetric Random Walks on Wheel-and-Spokes Graphs\",\"authors\":\"Collin Tully\",\"doi\":\"10.1137/21s1423531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study symmetric random walks on the vertices of a wheel-and-spokes graph. We consider the following questions. How long does it take for the walk to go from one vertex to another? Starting from one vertex, how long does it take to visit all vertices? Having visited all vertices, how much additional time does it take to return to the starting vertex? The answers to these questions are random variables for which we desire the exact probability distributions, if possible; otherwise, we seek at least their means and standard deviations. We compare our results to those of symmetric random walks on the vertices of polygons.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21s1423531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21s1423531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究轮辐图顶点上的对称随机漫步。我们考虑以下问题。从一个顶点走到另一个顶点需要多长时间?从一个顶点出发,访问所有顶点需要多长时间?访问了所有顶点后,返回到起始顶点需要多少额外的时间?这些问题的答案是随机变量,如果可能的话,我们希望得到精确的概率分布;否则,我们至少寻求它们的均值和标准差。我们将我们的结果与多边形顶点上的对称随机漫步的结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric Random Walks on Wheel-and-Spokes Graphs
We study symmetric random walks on the vertices of a wheel-and-spokes graph. We consider the following questions. How long does it take for the walk to go from one vertex to another? Starting from one vertex, how long does it take to visit all vertices? Having visited all vertices, how much additional time does it take to return to the starting vertex? The answers to these questions are random variables for which we desire the exact probability distributions, if possible; otherwise, we seek at least their means and standard deviations. We compare our results to those of symmetric random walks on the vertices of polygons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信