混合RT0有限元在MATLAB中的快速实现

Theodore Weinberg
{"title":"混合RT0有限元在MATLAB中的快速实现","authors":"Theodore Weinberg","doi":"10.1137/18S017430","DOIUrl":null,"url":null,"abstract":"We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Implementation of mixed RT0 finite elements in MATLAB\",\"authors\":\"Theodore Weinberg\",\"doi\":\"10.1137/18S017430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/18S017430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18S017430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Matlab开发了用最低阶拉维亚特-托马斯有限元离散的达西问题混合有限元方法的快速实现。实现是基于所谓的矢量化方法应用于有限元矩阵的计算和整体有限元矩阵的装配。代码支持二维和三维域,有限元可以是三角形、矩形、四面体或六面体。还可以很容易地修改代码以导入用户提供的网格。我们对免费提供的代码进行了注释,并与标准方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Implementation of mixed RT0 finite elements in MATLAB
We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信