{"title":"混合RT0有限元在MATLAB中的快速实现","authors":"Theodore Weinberg","doi":"10.1137/18S017430","DOIUrl":null,"url":null,"abstract":"We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Implementation of mixed RT0 finite elements in MATLAB\",\"authors\":\"Theodore Weinberg\",\"doi\":\"10.1137/18S017430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/18S017430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18S017430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Implementation of mixed RT0 finite elements in MATLAB
We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vectorized approach applied to the computation of the finite element matrices and assembly of the global finite element matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular, tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment on our freely available code and present a performance comparison with the standard approach.